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Abstract— Multi-agent imitation learning (MA-IL) aims to
inversely learn policies for all agents using demonstrations
collected from an expert group. However, this problem has
only been studied in the setting of Markov games (MGs)
allowing participants for concurrent actions, and do not work for
general MGs, with agents inconcurrently making decisions in
different turns. In this work, we propose iMA-IL, a novel multi-
agent imitation learning framework for general (inconcurrent)
Markov games. The learned policies are proven to guarantee
subgame perfect equilibrium (SPE), a stronger equilibrium
than Nash equilibrium (NE). The experiment results demon-
strate that compared to state-of-the-art baselines, our iMA-IL
model can better infer the policy of each expert agent using
their demonstration data collected from inconcurrent decision-
making scenarios.

I. INTRODUCTION

Reinforcement learning (RL) requires a predefined reward
function or reinforcement signal [20], [13], [21], [24] as the
objective for the reinforcement learner to efficiently explore
and learn a good policy. However, it is hard to manually
specify an appropriate and informative reward function in a
complex learning environment [9], [3]. Moreover, in scenarios
with multiple agents interacting with each other using shared
or competing rewards, the reward specification problem
becomes more challenging.

Imitation Learning (IL) or Learning from Demonstrations
(LfD) [1], [4], [11] aims to tackle the reward specification
problem by directly learning from expert demonstrations.
Especially, inverse reinforcement learning (IRL) [17], [31],
[30], [11], [29] recovers a reward function from expert demon-
strations, with an assumption that the demonstrator follows
an (near-)optimal policy when generating the data. Recent
works [25], [28] have investigated a more general scenario
with demonstration data from multiple interacting agents.
Such interactions are modeled by extending Markov decision
processes on individual agents to multi-agent Markov games
(MGs) [15]. However, these works only work for concurrent
MGs, with all agents making simultaneous decisions in each
turn, and do not work for general MGs, allowing agents
to make inconcurrent decisions in different turns, which
is common in many real world scenarios. For example, in
multiplayer games [12], such as Go game, and many card
games, players take turns to play, thus influence each other’s
decision. The order in which agents make decisions has a
significant impact on the game equilibrium. Fig. 1 illustrates
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Fig. 1: Decision-making process in an inconcurrent MG.

the decision-making process in an inconcurrent MG, where
the environment not only governs the state transition, but also
agents’ participation. As a result, directly applying concurrent
MG based approaches, i.e., MAGAIL [25] and MAAIRL [28]
would implicitly model the agent participation as an action
the agent can choose, thus leads to learner policies with poor
performances.

In this paper, we propose a novel framework, inconcurrent
multi-agent imitation learning (iMA-IL): A group of experts
provide demonstration data when playing a Markov game
(MG) with an inconcurrent decision-making process, and
iMA-IL inversely learns each expert’s decision-making policy.
We introduce a player function governed by the environment
to capture the participation order and dependency of agents
when making decisions. The participation order could be
deterministic (i.e., agents take turns to act) or stochastic
(i.e., agents need to take actions by chance). With the
general MG model, our framework generalizes MAGAIL
[25] from the concurrent Markov games to (inconcurrent)
Markov games, and the learned expert policies are proven to
guarantee subgame perfect equilibrium (SPE) [8], a stronger
equilibrium than the Nash equilibrium (NE) (guaranteed in
MAGAIL [25]). The experiment results show that compared
to GAIL [11] and MAGAIL [25], our iMA-IL can better infer
the policy of each expert agent using their demonstration
collected from inconcurrent decision-making scenarios.

II. PRELIMINARIES

A. Markov Games

Markov games (MGs) [14] are the cases of N interacting
agents, with each agent making a sequence of decisions whose
strategies only depend on the current state. A Markov game1

is denoted as a tuple (N,S,A, Y, ζ, P, η, r, γ) with a set of
states S and N sets of actions {Ai}Ni=1. At each time step t
with a state st ∈ S , if the indicator variable Ii,t = 1, an agent
i is allowed to take an action; otherwise, Ii,t = 0, the agent

1Note that Markov games defined in MAGAIL ([25]) assume concurrent
participation.We follow the rich literature [5], [10] to define Markov games,
which allow both concurrent and inconcurrent decision-making processes.



i does not take an action. As a result, the participation vector
It = [I1,t, · · · , IN,t] indicates active vs inactive agents at
step t. The set of all possible participation vectors is denoted
as I, namely, It ∈ I. Moreover, ht−1 = [I0, · · · , It−1]
represent the participation history from step 0 to t− 1. The
player function Y (governed by the environment) describes
the probability of an agent i being allowed to make an
action at a step t, given the participation history ht−1,
namely, Y (i|ht−1). ζ defines the participation probability
of an agent at the initial time step ζ : [N ] 7→ [0, 1]. Note
that, the player function can be naturally extended to a
higher-order form when the condition includes both previous
participation history and previous state-action history; thus,
it can be adapted to non-Markov processes. The initial states
are determined by a distribution η : S 7→ [0, 1]. Let φ
denotes no participation, determined by player function Y ,
the transition process to the next state follows a transition
function: P : S × A1 ∪ {φ} × · · · × AN ∪ {φ} 7→ P(S).
Agent i obtains a (bounded) reward given by a function
ri : S × Ai 7→ R2. Agent i aims to maximize its own total
expected return Ri =

∑∞
t=0 γ

tri,t, where γ ∈ [0, 1] is the
discount factor. Actions are chosen through a stationary and
stochastic policy πi : S×Ai 7→ [0, 1]. We denote expert policy
of an agent i as πEi , and its learner policy as πi. In this paper,
bold variables without subscript i denote the concatenation
of variables for all the agents, e.g., all actions as a, the joint
policy defined as π(a|s) =

∏N
i=1 πi(ai|s), r as all rewards.

Subscript −i denotes all agents except for i, then (ai,a−i)
represents the action of all N agents (a1, · · · , aN ). We use
expectation with respect to a policy to denote an expectation
with respect to the trajectories it generates. For example,
Eπ,Y [ri(s, ai)] , Est,a∼π,It∼Y [

∑∞
t=0 γ

tri(st, ai)], denotes
the following sample process as s0 ∼ η, I0 ∼ ζ, It ∼ Y ,
a ∼ π(·|st), st+1 ∼ P (st+1|st,a), for ∀i ∈ [N ]. Clearly,
when player function Y (i|ht−1) = 1 holds for all agents i’s
at any time step t, it is a MG with concurrent participation
of all agents as is introduced [14], [25]. To distinguish our
work from MAGAIL and be consistent with the literature [5]
and [10], we refer the game setting discussed in MAGAIL
as concurrent Markov games (cMGs), and that of our work
as Markov games (MGs).

B. Subgame Perfect Equilibrium for Markov Games

In concurrent Markov games (cMGs), all agents make
simultaneous decisions at any time step t, with the same goal
of maximizing its own total expected return. Thus, agents’
optimal policies are interrelated and mutually influenced. Nash
equilibrium (NE) has been employed as a solution concept to
resolve the dependency across agents, where no agents can
achieve a higher expected reward by unilaterally changing its
own policy [25]. However, Markov games (MGs) allowing
inconcurrent decisions (e.g., turn-based games such as the
Go game) views a Nash equilibrium a weaker solution [23].
An inconcurrent MG is modeled as a tree: each non-terminal

2Because of the inconcurrent setting, the rewards only depend on agents’
own actions.

node represents a state in the game, each leaf node represents
an outcome, and a node with its following nodes forms
a subgame [23]. This model reflects the action sequential
dependency in inconcurrent MGs. In such a game setting,
the Nash equilibrium focuses on participants’ final outcomes
(i.e., root-node Nash) and overlooks the action sequential
dependency. Therefore, it cannot rule out the “non-credible
threats”, i.e., outcomes that will not be reached by rational
players [23]. Instead, the subgame perfect equilibrium (SPE)
traverses through the game tree and finds Nash equilibrium
at each node (subgame). This solution set of every node
(subgame) Nash forms an SPE. It has been shown that in a
finite or infinite extensive-form game with either discrete or
continuous time, best-response strategies converge to SPE,
rather than NE [22], [2], [27].

III. INCONCURRENT MULTI-AGENT IMITATION
LEARNING

Extending concurrent multi-agent imitation learning to gen-
eral Markov games is challenging, because of the inconcurrent
decision making and dynamic state (subgame) participating.
In this section, we will tackle this problem using subgame
perfect equilibrium (SPE) solution concept.

A. Inconcurrent Multi-Agent Reinforcement Learning

In a Markov game (MG), the Nash equilibrium needs to
be guaranteed at each state (subgame) s ∈ S3, namely, we
apply subgame perfect equilibrium (SPE) solution concept
instead. Formally, a set of agent policies {πi}Ni=1 is an SPE
if at each state s ∈ S (also considered as a root node
of a subgame), no agent can achieve a higher reward by
unilaterally changing its policy on the root node or any other
descendant nodes of the root node, i.e., ∀i ∈ [N ],∀π̂i 6=
πi,Eπi,π−i,Y [ri] ≥ Eπ̂i,π−i,Y [ri]. Therefore, our constrained
optimization problem is ([7], Theorem 3.7.2)

min
π,v

fr(π,v) =

N∑
i=1

∑
s∈S,h∈H

vi(s|h)− Eai∼πi(·|s)[qi(s, ai|h)]

s.t. vi(s|h) ≥ qi(s, ai|h) ∀i ∈ [N ], s ∈ S, ai ∈ Ai, h ∈ H,
v , [v1; · · · ; vN ]. (1)

For an agent i with a probability of taking action a at state
st given a history ht−1, its Q-function is

qi(st, ai|ht−1) = Eπ−i,Y [Y (i|ht−1)ri(st, ai)

+ γ
∑
It∈I

Pr(It|ht−1)
∑

st+1∈S

P (st+1|st,ast)vi(st+1|ht)], (2)

where Pr(It|ht−1) =
∏
i:Ii,t=1 Y (i|ht−1)

∏
j:Ij,t=0(1 −

Y (j|ht−1)) is the probability of participation vector It given
history ht−1. The constraints in eq. (1) guarantee an SPE,
i.e., (vi(s|h)− qi(s, ai|h)) is non-negative for any i ∈ [N ].
Consistent with MAGAIL [25] the objective has a global
minimum of zero under SPE, and π forms SPE if and only
if fr(π,v) reaches zero while being a feasible solution.

3Note that in a concurrent Markov game, where each agent makes
simultaneous decisions at each time step t, subgame perfect equilibrium
(SPE) is equivalent to Nash equilibrium, since the Nash equilibrium at each
state s (i.e., a subgame) is the same.



We use iMA-RL(r) to denote the set of policies that
form an SPE under reward function r, and can maximize
γ-discounted causal entropy of policies:

iMA-RL(r) = arg min
π∈Π,v

fr(π,v)−H(π), (3)

s.t. vi(s|h) ≥ qi(s, ai|h) ∀i ∈ [N ], s ∈ S, ai ∈ Ai,∀h ∈ H,
(4)

where qi is defined in eq. (2). Our objective is to define a
suitable inverse operator iMA-IRL. The key idea of MAIRL
is to choose a reward that creates a margin between a
set of experts and every other set of policies. However,
the constraints in SPE optimization eq. (3) can make this
challenging. To that end, we derive an equivalent Lagrangian
formulation of eq. (3) to defined a margin between the
expected rewards of two sets of policies to capture the
“difference”.

B. Inconcurrent Multi-Agent Inverse Reinforcement Learning

The SPE constraints in eq. (4) state that no agent i can
obtain a higher expected reward via 1-step temporal (TD)
difference learning. We replace 1-step constraints with (t+1)-
step constraints with the solution remaining the same as
iMA-RL. The general idea is consistent with MAGAIL [25].
The updated (t+1)-step constraints are

v̂i(s
(0);π, r, ζ) ≥ Q(t)

i ({s(j), a
(j)
i }

t
j=0;π, r, ht−1), (5)

∀t ∈ N+, i ∈ [N ], s(j) ∈ S, a(j)i ∈ Ai, ht−1 ∈ H.
By implementing the (t+1)-step formulation eq. (5), we aim

to construct the Lagrangian dual of the primal in eq. (3).
Since for any policy π, fr(π, v̂) = 0 given v̂i defined as in
Theorem 1 in Appx VI-A , we just focus on the constraints
in eq. (5) to get the dual problem

max
λ≥0

min
π
L(t+1)
r (π, λ) ,

N∑
i=1

∑
ht−1∈H

∑
τi∈T ti

λ(τi;ht−1)(Q
(t)
i (τi;π, r, ht−1)− v̂i(s(0);π, r, ζ)),

(6)

where T ti is the set of all length-t trajectories of the form
{s(j), a(j)i }tj=0 , with s(0) as initial state, λ is a vector of
N · |T (t)

i | · |H| Lagrange multipliers, and v̂i is defined as in
Theorem 1 in Appx VI-A.

Theorem 2 illustrates that a specific λ is able to recover
the difference of the sum of expected rewards between not
all optimal and all optimal policies.

Theorem 2 For any two policies π∗ and π, let

λ∗π(τi;ht−1) = η(s(0))Pr(ht−1)

t−1∏
j=0

(
∑
a
j
−i

π∗−i(a−i|s(j))

P (s(j+1)|s(j),a(j)))
∏

s(j):Ii,j=1

πi(a
(j)
i |s

(j)) (7)

be the probability of generating the sequence τi us-
ing policy πi, π∗−i and ht−1, where Pr(ht−1) =

Pr(I0)
∏t−1
k=1 Pr(Ik|hk−1) is the probability of history ht−1.

Then
lim
t−→∞L

(t+1)
r (π∗, λ∗π) =

N∑
i=1

EπiEπ∗
−i,Y

[ri(s
(j), a

(j)
i )]− Eπ∗,Y [ri(s

(j), a
(j)
i )]

where the dual function is L(t+1)
r (π∗, λ∗π) and each multi-

plier can be considered as the probability of generating a
trajectory of agent i ∈ N , τi ∈ T ti , and ht−1 ∈ H.

Theorem 2 provides a horizon to establish iMA-IRL
objective function with regularizer ψ.

iMA-IRLψ(πE) = argmax
r
−ψ(r) +

N∑
i=1

(EπE ,Y [ri])

− (max
π

N∑
i=1

(βHi(πi) + Eπi,πE−i ,Y
[ri])), (8)

where Hi(πi) = Eπi,πE−i
[− log πi(a|s)] is the discounted

causal entropy for policy πi when other agents follow πE−i ,
and β is a hyper-parameter controlling the strength of the
entropy regularization term as in GAIL [11].

Corollary 2.1. If I = 1 for all i ∈ [N ] then
iMA-IRLψ(πE) = MAIRLψ(πE); furthermore, if N = 1,
β = 1 then iMA-IRLψ(πE) = IRLψ(πE).

C. Inconcurrent Multi-Agent Occupancy Measure Matching
We first define the inconcurrent occupancy measure in

Markov games:
Definition 1 For an agent i ∈ [N ] with a policy πi ∈ Π,

define its inconcurrent occupancy measure ρpπi : S × Ai ∪
{φ} 7→ R as ρpπi(s, a) =

πi(a|s)(η(s)ζ(i) +
∞∑
t=1

∑
ht−1

γtPr(st = s|πi,πE−i)Y (i|ht−1)),

if a ∈ Ai,

η(s)(1− ζ(i)) +
∞∑
t=1

∑
ht−1

γtPr(st = s|πi,πE−i )(1− Y (i|ht−1)),

if a ∈ {φ}.
The occupancy measure can be interpreted as the distribution
of state-action pairs that an agent i encounters under the
participating and nonparticipating situations. Notably, when
ζ(i) = 1, Y (i|ht−1) = 1 for all t ∈ {1, ...,∞}, ht−1 ∈
H, inconcurrent occupancy measure in MG turns to the
occupancy measure defined in MAGAIL and GAIL, i.e.,
ρpπi = ρπi . With the additively separable regularization ψ,
for each agent i, πEi is the unique optimal response to other
experts πE−i . Therefore we obtain the following theorem:

Theorem 3 Assume ψ(r) =
∑N
i=1 ψi(ri), ψi is convex for

each i ∈ [N ], and that iMA-RL(r) has a unique solution4

for all r ∈ iMA-IRLψ(πE), then

iMA-RL ◦ iMA-IRLψ(πE) =

argmin
π

N∑
i=1

∑
h∈H

−βHi(πi)+ψ∗i (ρpπi,πE−i
− ρpπE ) (9)

4The set of subgame perfect equilibrium is not always convex, so we
have to assume iMA-RL(r) returns a unique solution.



where πi, E−i denotes πi for agent i, and πE−i for other
agents.

In practice, we are only able to calculate ρpπE and ρpπ . As
following MAGAIL [25], we match the occupancy measure
between ρpπE and ρpπ rather than ρpπE and ρpπi,πE−i

.

IV. PRACTICAL INCONCURRENT MULTI-AGENT
IMITATION LEARNING

In this section, we propose practical algorithms for incon-
current multi-agent imitation learning, and introduce three
representative scenarios with different player functions.

A. Inconcurrent Multi-Agent Generative Adversarial Imitation
Learning

The selected ψi in Proposition 1 (in Appx VI-B) contributes
to the corresponding generative adversarial model where each
agent i has a generator πθi and a discriminator, Dwi . When
the generator is allowed to behave, the produced behavior will
receive a score from discriminator. The generator attempts to
train the agent to maximize its score and fool the discriminator.
We optimize the following objective:

min
θ

max
w

Eπθ,Y
[ N∑
i=1

logDwi(s, ai)
]

+EπE ,Y
[ N∑
i=1

log(1−Dwi(s, ai))
]
. (10)

In practice, the input of iMA-IL is Z , the demonstra-
tion data from N expert agents in the same environment,
where the demonstration data Z = {(st,a)}Tt=0 are col-
lected by sampling s0 ∼ η, I0 ∼ ζ, It ∼ Y,a ∼
π∗(·|st), st+1 ∼ P (st+1|st,a). The assumptions include
knowledge of N, γ,S,A. Transition P , initial state dis-
tribution η, agent distribution ζ, player function Y are
all considered as black boxes, and no additional expert
interactions with environment during training process are
allowed. In the RL process of finding each agent’s policy
πθi , we follow MAGAIL [25] to apply Multi-agent Actor-
Critic with Kronecker-factors (MACK) and use the advantage
function with baseline Vν for variance reduction.

B. Player Function Structures

In MGs, the order in which agents make decisions is
determined by the player function Y . Below, we discuss
three representative structures of player function Y , includ-
ing concurrent participation, deterministic participation, and
stochastic participation.
Concurrent participation. When Y (i|ht−1) = 1 holds for
all agents i ∈ [N ] at every step t (as shown in Fig. 2a), agents
make simultaneous actions, and a general Markov game boils
down to a simple concurrent Markov game.
Deterministic participation. When the player function
Y (i|ht−1) is deterministic for all agents i ∈ [N ], it can only
output 1 or 0 at each step t. Many board games, e.g., Go,
and Chess, have deterministic player functions, where agents
take turns to play. Fig. 2b shows an example of deterministic
participation structure.

Stochastic participation. When the player function is
stochastic, namely, Y (i|ht−1) ∈ [0, 1] for some agent i ∈ [N ]
at time step t, the agent i will make an action by chance. As
illustrated in Fig. 2c, three agents all have stochastic player
functions at step t, and agent #1 does not take an action at
step t, while agent #2 and #3 happen to take actions.

V. EXPERIMENTS

We evaluate iMA-IL with both stochastic and deterministic
player function structures under cooperative games. We
compared our iMA-IL with two baselines, including Behavior
Cloning (BC) by OpenAI [6] and decentralized Multi-agent
generative adversarial imitation learning (MAGAIL) [25]. The
results are collected by averaging over 5 random seeds.

We use the particle environment [16] as a basic setting,
and customize it into four games to allow different inconcur-
rent player function structures. Deterministic Cooperative
Navigation: Three agents (agent #1, #2 and #3) need to
cooperate to get close to three randomly placed landmarks
through physical actions. They get high rewards if they are
close to the landmarks and are penalized for any collision
with each other. Ideally, each agent should cover a single
distinct landmark. In this process, the agents must follow
a deterministic participation order to take actions, i.e., in
the first round all three agents act, in the second round
only agent #1 and #2 act, in the third round only agent #1
acts, and repeat these rounds until the game is completed.
Stochastic Cooperative Navigation: This game is the same
with deterministic cooperative navigation except that all three
agents have a stochastic player function. Each agent has 50%
chance to act at each round t.

In these game environments, agents are first trained with
Multi-agent ACKTR [26], [25], thus the true reward functions
are available, which enable us to evaluate the quality of
recovered policies. When generating demonstrations from
well-trained expert agents, a “null” (no-participation) as a
placeholder action is recorded for each no-participation round
in the trajectory. The quality of a recovered policy is evaluated
by calculating agents’ average true reward of a set of gener-
ated trajectories. We compare our iMA-IL with two baselines
- behavior cloning (BC) [18] and decentralized Multi-agent
generative adversarial imitation learning (MAGAIL) [25].
Behavior cloning (BC) utilizes the maximum likelihood
estimation for each agent independently to approach their
policies. Decentralized multi-agent generative adversarial
imitation learning (MAGAIL) treats each agent with a unique
discriminator working as the agent’s reward signal and a
unique generator as the agent’s policy. It follows the maximum
entropy principle to match agents’ occupancy measures from
recovered policies to demonstration data.

We compare iMA-IL with baselines under deterministic
cooperative navigation, and stochastic cooperative navigation
games. Fig. 3 show the normalized rewards, when learning
policies with BC, MAGAIL and iMA-IL, respectively.

When there is only a small amount of expert demonstra-
tions, the normalized rewards of BC and iMA-IL increase,
especially, when less demonstration data are used, i.e.,



(a) Concurrent participation (b) Deterministic participation (c) Stochastic participation

Fig. 2: iMA-IL with three player function structures. (a) Concurrent participation: The player function is equal to 1, all
agents take actions at all time steps. (b) Deterministic participation: In this example, three agents take turns to make actions
with a fixed order. (c) Stochastic participation: Three agents all have stochastic player functions (i.e., yellow boxes), thus,
each agent has a certain probability to make an action w.r.t the player function given the participation history ht−1; in this
example, only agents #2 and #3 happen to make actions, and agent #1 does not.

Fig. 3: Average true reward from cooperative tasks. Perfor-
mance of experts and random policies are normalized to one
and zero respectively. We use inverse log scale for better
comparison.

less than 400 demonstrations. After a sufficient amount of
demonstrations are used, i.e., more than 400, iMA-IL has
higher rewards than BC and MAGAIL. This makes sense
since at certain time steps there exist non-participating agents
(based on the player functions), but BC and MAGAIL models
consider the non-participation as an action the agent can
choose, where in reality it is governed by the environment.
On the other hand, with the introduced player function Y ,
iMA-IL characterizes such no participation events correctly,
thus more accurately learns the expert policies.

The normalized awards of BC are roughly unchanged in
Fig. 3(a), and in Fig. 3(b) after 400 demonstrations, which
seems contradictory to that of [19], [25], and can be explained
as follows. In Fig. 3(b) (stochastic cooperative navigation),
the performance of BC is low when using less demonstrations,
but increases rapidly as more demonstrations are used, and
finally converges to the “best” performance around 0.65 with
300 demonstrations. In Fig. 3(a), deterministic cooperative
navigation is easier to learn compared with the stochastic
cooperative navigation game shown in Fig. 3(b), since there
is no randomness in the player function. The performance
with only 200 demonstrations is already stabilized at 0.7.

In the stochastic cooperative navigation game (Fig. 3(b)),
iMA-IL performs consistently better than MAGAIL and BC.
However, in the deterministic cooperative navigation game
(Fig. 3(a)), with 200 demonstration, iMA-IL does not perform
as well as MAGAIL. This is due to the game setting, namely,
two players actively searching for landmarks are sufficient to
gain a high reward in this game. The last agent, player #3,
learned to be “lazy”, without any motivation to promote the
total shared reward among all agents. In this case, it is hard
for iMA-IL to learn a good policy of player #3 with small
amount of demonstration data, because player #3’s has 2

3
absence rate, given the pre-defined deterministic participation
function. Hence, iMA-IL does not have enough state-action
pairs to learn player #3. This gets improved when there are
sufficient data, say, more than 400 demonstrations.

VI. CONCLUSION

In this paper, we make the first attempt to propose an
inconcurrent multi-agent generative adversarial imitation
learning (iMA-IL) framework, which models the inconcurrent
decision-making process as a Markov game and develops
a player function to capture the participation dynamics of
agents. Experimental results demonstrate that our proposed
iMA-IL can accurately learn the experts’ policies from their
inconcurrent trajectory data, comparing to SOTA baselines.
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APPENDIX

A. Time Difference Learning
Theorem 1. For a certain policy π and reward r, let

v̂i(s
(t);π, r, ht−1) be the unique solution to the Bellman

equation:
v̂i(s

(t);π, r, ht−1) =Eπ
[
Y (i|ht−1)ri(s

(t), a
(t)
i )

+γ
∑
It∈I

Pr(It|ht−1)
∑

s(t+1)∈S

P (s(t+1)|s(t),a(t))vi(s
(t+1))

]
,

t ∈ N+,∀s(t) ∈ S, ht−1 ∈ H.

Denote q̂(t)i ({s(j),a(j)}t−1j=0, s
(t), a

(t)
i ;π, r, ht−1) as the dis-

counted expected return for the i-th agent conditioned on
visiting the trajectory {s(j),a(j)}t−1j=0, s

(t) in the first t − 1

steps and choosing action a(t)i at the t-th step, when other
agents using policy π−i:
q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, r, ht−1)

=
t−1∑
j=0

γjri(s
(j), a

(j)
i )Ii,j + γtEπ−i [Y (i|ht−1)ri(s

(t), a
(t)
i )+

γ
∑
It∈I

Pr(It|ht−1)
∑

s(t+1)∈S

P (s(t+1)|s(t),a(t))vi(s
(t+1);π, r, ht)].

Then π is subgame perfect equilibrium if and only if:

v̂i(s
(0);π, r, ζ) ≥Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, r, ht−1)]

,Q(t)
i ({s(j), a

(j)
i }

t
j=0;π, r, ht−1)

∀t ∈ N+,i ∈ [N ], s(j) ∈ S, a(j)i ∈ Ai, ht−1 ∈ H.

B. Proposition 1
Proposition 1: If β = 0 and ψ(r) =

∑N
i=1 ψi(ri) where

ψi(ri) = EπE ,Y [g(ri)] if ri > 0; +∞ otherwise, and

g(x) =

{
−x− log(1− ex) if ri > 0

+∞ o.w.

then
argmin

π

N∑
i=1

ψ∗i (ρ
p
πi,πE−i − ρ

p
πE

) = argmin
π

N∑
i=1

ψ∗i (ρ
p
πi,π−i − ρ

p
πE )

= πE .
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