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Abstract—Given the underlying road network of an urban
area, the problem of urban dynamics prediction aims to capture
the patterns of urban dynamics and to forecast short-term urban
traffic status continuously from the historical observations. This
problem is of fundamental importance to urban traffic manage-
ment, planning, and various business services. However, predict-
ing urban dynamics is challenging due to the highly dynamic (i.e.,
varying across geographical locations and evolving over time) and
uncertain (i.e., affected by unexpected factors) nature of urban
traffic systems. Recent works adopt meta-learning approaches
to capture irregular and rare patterns but make unrealistic
assumptions such as single-domain uncertainties and explicit
temporal task segmentation. In this paper, we solve the urban
dynamics prediction problem from the Bayesian meta-learning
perspective and propose a novel domain adaptable continuous
meta-learning approach (DAC-ML) that does not require task
segmentation. Trained on a sequence of spatial-temporal urban
dynamics data, DAC-ML aims to detect and infer unobserved
latent variations (from task and domain levels) and generalize
well in a sequential prediction setting, where the underlying
data generating process varies over time. Experimental results
on three real-world datasets demonstrate that DAC-ML can
outperform baselines in urban dynamics prediction, especially
when obvious urban dynamics and temporal uncertainties are
present.

Index Terms—Spatial-temporal data mining, meta-learning,
domain adaptation

I. INTRODUCTION

In an urban traffic system, ”urban dynamics” refers to the
overall mobility of humans and their interactions with the
system. Given the underlying road network of an urban area,
the problem of urban dynamics prediction aims to capture the
patterns of urban dynamics and to forecast short-term urban
traffic status (e.g., traffic speed, volume) continuously from the
historical observations obtained from IoT devices (e.g., GPS
equipment on vehicles and automated fare collection devices
on buses and trains).

The urban dynamics prediction problem is of fundamental
importance to many aspects of modern urban administration,
such as urban transit planning, resource allocation, traffic
management, and public safety [1], [2]. In addition, precise
urban dynamics predictions (e.g., customer flow and traffic
condition) are also the basis of many location-based services,

Fig. 1: Traffic dynamics with varied temporal granularity.

including but not limited to routing, package delivery, and
ride-sharing.

Though extensively studied in the literature as the traf-
fic prediction problem, urban dynamics prediction is indeed
more complex and challenging for modern cities. Due to
the unprecedented travel demand surges accompanying the
fast global urbanization process, the existing transportation
infrastructures are increasingly overloaded, causing more fre-
quent congestion and higher risks of traffic anomalies (e.g.,
accidents). Also, unexpected human activities (e.g., gathering,
protests) have become an integrated part of modern urban
dynamics. All such factors significantly increase the uncertain-
ties of urban traffic, leading to previously unknown irregular
patterns and making precise prediction a more difficult task.
State-of-the-art. Numerous research works have studied urban
dynamics prediction, including methods based on traditional
machine learning [3]–[6] and approaches applying deep neural
networks [7]–[12]. However, most of these works assume
that urban traffic dynamics follow regular or previously seen
patterns in the historical data, and ignore uncertainties due to
abrupt and uncontrollable factors such as extreme weather,
accidents, and unexpected events. A few recent works try
to capture such uncertainties from the perspective of meta-
learning [13]–[15], due to its ability to adapt to new, unseen
patterns quickly. Pan et al. [13] attempt to use a meta-graph



attention network to extract spatial correlation, and a meta-
recurrent neural network for temporal dependency on traffic
prediction. Yao et al. [14] view different cities as different
training tasks, and propose to use the meta-learned knowledge
from multiple cities to predict traffic status. A recent work,
cST-ML [15], covers urban uncertainties with Bayesian meta-
learning [16]. However, two practical limitations prevent these
works from accurately predicting urban dynamics: (i) these
meta-learning based approaches assume that urban dynamics
evolve under the same pattern (i.e., domain) over time, and (ii)
their test time adaption is achieved by explicitly segmenting
continuous data into predefined discrete time windows (i.e.,
prediction “tasks”). We demonstrate these two limitations with
examples below.
Limitation 1 (Domain shift): Urban dynamics uncertainties
are complex and may occur from multiple domains in a high-
dimensional space. For example, Fig. 1(a) demonstrates the
vehicle inflow dynamics (i.e., the average number of vehicles
coming to a region) over three months, around a school. Fig.
1(a) shows that the traffic pattern changes significantly over
months, i.e., with high inflows in September when school starts
and a low traffic inflow in August during the summer break.
Such an example illustrates that the urban dynamics pattern
shifts monthly. Similarly, the pattern shifts may also occur on
a seasonal and weekly basis, affected by human activities and
other factors. These drastic urban dynamic pattern changes
indicate that they are from different “domains”. Therefore, it
is necessary to capture the domain information which embeds
the evolving urban dynamics and temporal uncertainties, and
view them from a high-dimensional space, e.g., various tem-
poral granularities (daily, weekly, monthly, and seasonally) as
different dimensions of a domain.
Limitation 2 (Data pattern with variable task lengths):
Urban dynamics data comes continuously as a sequence, and
the underlying pattern changes unexpectedly without notice
[1], [17]. These characteristics make the task separation
assumption in previous works [13]–[15], [18] incompatible
with the continuous prediction setting. Therefore, in the meta-
learning formulation of the urban dynamics prediction prob-
lem, a “task” is to predict the urban dynamics in the next
time step using all the data in the recent time interval that
follows the same pattern. Essentially, the switches between
these tasks are usually unobserved, and the length of each
task is non-deterministic. For example, in Fig. 1(b), different
tasks are colored differently, and the tasks do not have a
consistent and deterministic length. Hence, pre-segmenting the
urban dynamics data into fixed-length tasks may break the
natural patterns of the underlying traffic dynamics and lower
the prediction accuracy.
Our approach. To address the aforementioned two unrealistic
limitations made by the state-of-the-art works, in this paper,
we make the first attempt to solve the unique urban dynamics
prediction problem by considering multiple domains in a
continuous setting on the basis of Bayesian meta-learning.
A novel domain adaptable Bayesian meta-learning approach
(DAC-ML) is proposed, which can adapt data, extract domain

information continuously, and predict sequentially from un-
segmented urban dynamics data. Our main contributions are
summarized as follows:
• We are the first to consider and model the ever-evolving

urban dynamics as diverse domains. With this, we propose
to use a domain inference network to constantly monitor
domain changes and extract domain information to enable
domain adaptation. (See Section III-B.)

• We develop a novel domain adaptable Bayesian meta-
learning (DAC-ML) framework under the continuous setting
to fulfill the needs for online adaptation and prediction.
DAC-ML advances the Bayesian black-box meta-learning
framework to enable adaptation in an online learning setting.
(See Section III-C.)

• We identify the practical challenges for DAC-ML, namely,
the spatial-temporal correlation and complex temporal un-
certainty from various granularities. For the first practical
challenge, we utilize ConvLSTM [9] to capture the spatial-
temporal information from historical data. For the second,
we view different granularities as different dimensions of a
domain, and train several independent domain dimension in-
ference modules to capture temporal uncertainty in multiple
granularities. (See Section III-D.)

• We perform extensive experiments on real-world spatial-
temporal datasets (traffic speed, taxi inflow, and travel de-
mand) to evaluate our proposed DAC-ML. The experimen-
tal results demonstrate that DAC-ML outperforms baseline
methods, and the extracted domain statistics contribute to
urban dynamics prediction accuracy. (See Section IV.) We
make our code and unique dataset available to contribute
to the research community1.

II. OVERVIEW

In this section, we define the urban dynamics prediction
problem, and highlight the research challenges.

A. Preliminaries

Urban dynamics encompasses many aspects, including traf-
fic speed, vehicle inflow/outflow, human mobility, etc. These
aspects and their statistics, which vary across different geo-
graphical locations and evolve over time, can represent and
characterize the urban dynamic status of a city. We divide
an urban area into grid cells defined below to get a clearer
view of the urban dynamics in different geographical locations.
Suppose each grid cell is a target, we are able to study its urban
dynamics influenced by its spatial and temporal neighbors.
Definition 1 (A grid cell sij). We partition a city into I × J
grid cells, where each grid cell has equal side-length (e.g.,
1× 1km2), denoted as S = {sij}, where 1 ≤ i ≤ I , 1 ≤ j ≤
J .
Definition 2 (A target region Rij). Each target grid cell sij
comes with a target region Rij . The target region Rij is a
square geographic region formed by `× ` grid cells centering
sij . We denote a target region as Rij = 〈sij , `〉. In our study,

1The code and dataset are accessible at https://github.com/XinZhang525/
DAC-ML.



we hold the assumption that the urban dynamics of each grid
cell within a target region Rij has strong spatial correlations,
thus affecting the urban dynamics prediction on the target grid
cell sij .
Definition 3 (Urban dynamic features X). Features that
impose influences on the urban dynamic status are urban
dynamic features, e.g., traffic speed, crowd flow, time, etc. One
feature of a grid cell s at time slot t is a scalar xt. Features
from each grid cell in a target region at time slot t forms
the feature map of the target region R, denoted as a matrix
Xt ∈ R`×`. Combining features from multiple aspects gives
the complete feature maps in region R at time slot t, i.e., a
tensor Xt = {X1

t , ..., X
n
t } ∈ Rn×`×`, where n ∈ N+ is the

number of features.
Definition 4 (Urban status y). Urban status depicts and
evaluates the condition of urban mobility, e.g., the traffic
quality measured in traffic inflow/outflow. We denote yt as
the urban status of grid cell s in time slot t. In this paper, we
choose one urban status measure as the prediction target. Note
that other measures can be treated as urban dynamic features
to assist the prediction.
Definition 5 (Urban dynamic history D.) Urban dynamics
observations D records urban features and status sequentially
over time, i.e., D = {Xt, yt}Tt=1, where T is the length of D.
Specifically, we use Dt to denote the historical observations
prior to time slot (t+ 1) with Dt = {X1, y1, · · · ,Xt, yt}.

B. Problem Definition & Technical Challenges

Unlike methods that require task segmentation [13]–[15],
we view urban dynamics data as a sequence of continuous
observations over time. Specifically, at a time slot t with prior
dynamics history Dt−1, the current urban features Xt are
observed for prediction, after which the ground-truth urban
status yt can be perceived. Therefore, the continuous urban
dynamics prediction problem aims at training a model that is
able to predict the urban status yt from the current observation
Xt and Dt−1 for the target grid cell s in a time slot t.
For example, given the urban features and urban dynamic
history of a region at step t, including travel demands and
weather statistics, it is worth predicting the urban status as the
traffic speed, for traffic light control, route recommendation,
etc. Since the pattern of the urban dynamics (namely, the
prediction task) evolves over time with uncertainties, we model
the problem using the meta-learning paradigm as below.
Problem Definition (Continuous Urban Dynamics Predic-
tion). Given historical urban dynamics data D = {Xt, yt}Tt=1,
we aim to train a meta-learner parameterized by θ that is able
to minimize the expected loss towards the end of the dynamics
sequence, i.e.,

θ∗ = argmin
θ

T∑
t=1

L(φt,Xt, yt), where φt = q(Xt,Dt−1; θ).

(1)

Note that, here T represents the end of an urban dynamics
time series data. It can take ∞ if the dynamics data keeps

being generated over time. The well-trained meta-learner θ∗

can then be used to predict urban status for future time slots.
Challenges. As are illustrated in the introduction, the in-
troduced continuous urban dynamics prediction problem is
challenging from two perspectives: (C1) How to characterize
the domain shifts (i.e., urban dynamic pattern variations) and
adapt to them in the urban dynamics modeling (See Fig. 1(a))?
(C2) Given urban dynamics data observed continuously, how
to design an algorithm that can adapt to new observations and
make predictions sequentially free from the task segmentation
assumption (See Fig. 1(b))?

III. METHODOLOGIES

Built upon the state-of-the-art (SOTA) approaches in meta-
learning (See Section III-A), we propose domain adaptable
continuous meta-learning (DAC-ML) for the urban dynamics
prediction problem. In DAC-ML, we introduce a domain
information inference network (i.e., tackling the challenge
C1, See Section III-B), and develop a domain adaptable
Bayesian meta-learning (DAC-ML) framework to enable con-
tinuous adaptation and online prediction given observed and
historical urban dynamics data (addressing challenge C2, See
Section III-C).

A. SOTA: Bayesian Meta-Learning

Traditional meta-learning for few-shot learning with task
segmentation [13], [15], [18]–[20] aims at training a model
that can adapt to a new task quickly from little support
data. For the fulfillment of such a goal, the meta-learner q
parameterized by θ is trained on a set of training tasks τi’s
sampled from the same task distribution, i.e., τi ∼ p(τ). Each
task τi consists of a training set Dtri for adaptation and a
testing set {(Xts

i , y
ts
i )} for loss computation and meta-learner

update. With the negative log likelihood loss, its objective is:

min
θ

Eτi [− log(p(ytsi |Xts
i , φi))], where φi = q(Dtri ; θ).

Here, the task statistics φi adapted from q(Dtri ; θ) is used for
the prediction model. To capture the potential uncertainties of
the task statistics, e.g., weather conditions and car accidents
for urban dynamics prediction, Bayesian meta-learning [16],
[21], [22] infers a distribution of task statistics q(φi|Dtri ; θ)
for the final prediction rather than a deterministic task statistic.
With this inferred distribution, Bayesian meta-learning targets
maximizing the log likelihood lower bound2 across all tasks,
i.e.,

max
θ

Eτi
[
Eq(φi|Dtri ;θ)[log p(y

ts
i |Xts

i , φi)]

−DKL(q(φi|Dtri ; θ)||p(φi; θ))
]
,

(2)

where DKL is the Kullback-Leibler divergence. For simplicity,
the Bayesian prior p(φi; θ) is assumed to be the standard
Gaussian distribution N (0, I). Here, q is modeled with a
task inference network parameterizing the mean and log-
variance diagonal of a Gaussian distribution of φi. Hence,

2The log likelihood is approximated by variational lower bound (ELBO).
See more details in [16], [21], [22].



φi can be sampled from this distribution, and the sampling
process enables the Bayesian meta-learner to capture the task
uncertainty during each adaptation process.
Limitations. Such Bayesian meta-learning paradigm fails to
address (C1) the domain adaptation challenge and (C2) the
unsegmented task challenge in the problem of urban dynamics
prediction. First, the task distribution p(τ) may also change
across tasks. As illustrated in Fig. 1(a), each month represents
a new and unique task (data pattern) distribution. Moreover,
the dataset of each task Dtri may not be well segmented
because the time interval length of data with the same pattern
may be time-varying and uncertain (See Fig. 1(b)).

B. Domain Adaptable Bayesian Meta-Learning

Each task τi is sampled from a distribution determined by
its domain, e.g., the unique urban dynamics pattern in a month.
Denote ωi as the domain statistics of a task τi, indicating the
data generation pattern of the underlying domain. To address
challenge C1, we develop domain adaptable Bayesian meta-
learning (DAC-ML), by introducing domain statistics ωi’s
into the objective of single domain Bayesian meta-learning in
Eq. (2). For each training task τi, the objective of in Eq. (2)
is extended as follows.

Eq(ωi,φi|Dtri ;θ)[log p(y
ts
i |Xts

i , ωi, φi)]

− Eq(ωi,φi|Dtri ;θ)

[
log

q(ωi, φi|Dtri ; θ)

p(ωi, φi; θ)

]
=Eh(ωi|Dtri ;θ)Eq(φi|Dtri ,ωi;θ)[log p(y

ts
i |Xts

i , ωi, φi)]

− Eh(ωi|Dtri ;θ)Eq(φi|Dtri ,ωi;θ)
[
log

h(ωi|D
tr
i ;θ)q(φi|D

tr
i ,ωi;θ)

p(ωi;θ)p(φi|ωi;θ)

]
=Eh(ωi|Dtri ;θ)Eq(φi|Dtri ,ωi;θ)[log p(y

ts
i |Xts

i , ωi, φi)]

−DKL

[
h(ωi|Dtri ; θ)||p(ωi; θ)

]
− Eh(ωi|Dtri ;θ)DKL

[
q(φi|Dtri , ωi; θ)||p(φi|ωi; θ)

]
, (3)

where the first equality holds by the definition of conditional
probability. Taking the average over all training tasks τi ∼
p(τ), the DAC-ML objective is Eq. (4).

max
θ

Eτi
[
Eh(ωi|Dtri ;θ)Eq(φi|ωi,Dtri ;θ)

[
log p(ytsi |Xts

i , ωi, φi)
]

−DKL

(
h(ωi|Dtri ; θ)||p(ωi; θ)

)
− Eh(ωi|Dtri ;θ)

[
DKL

(
q(φi|ωi,Dtri ; θ)||p(φi|ωi; θ)

)]]
.

(4)

C. Continuous Domain Adaptable Bayesian Meta-Learning

For the second challenge C2, considering that urban dy-
namics data come sequentially, and at each time slot t, the
current urban dynamic features Xt are observed, and we
are able to derive the probability of the current urban status
as p(yt|Xt,Dt−1). To capture such a continuity, we treat
previous observations Dt−1 and current observations Xt as
the training dataset Dtrt = (Dtrt−1,Xt) to adapt and infer task
and domain statistics from, and the current observations Xt as
the test sample. Clearly, over time t, the dataset of the current
task is with a variable length. Then, replacing the expectation
Eτi over the distribution of tasks in Eq. (4) with a summation

over the time t, we extend the domain adaptable meta-learning
to fit the setting of continuous prediction, as the objective of
domain adaptable continuous meta-learning (DAC-ML), i.e.,

max
θ

∑T
t=1

[
Eh(ωt|Xt,Dt−1;θ)Eq(φt|ωt,Xt,Dt−1;θ)

[
log p(yt|Xt,Dt−1,ωt,φt)

]
−DKL

(
h(ωt|Xt,Dt−1;θ)||p(ωt;θ)

)
−Eh(ωt|Xt,Dt−1;θ)

[
DKL

(
q(φt|ωt,Xt,Dt−1;θ)||p(φt|ωt;θ)

)]]
,

(5)

where p(ωt; θ) and p(φt|ωt; θ) ∼ N (0, I). In particular,
Eq. (5) does not require us to know a priori the distribution
p(τ) of tasks, as the distribution q(φt|ωt,Xt,Dt−1; θ) of task
statistics φt is inferred at each time t.

We model the distributions of task statistics φ and domain
information ω using two neural networks, i.e., q and h,
respectively. Therefore, the goal of DAC-ML is to jointly
meta-learn both the task and domain inference networks such
that they can learn representations of the data collected so
far. With this, we show the overall structure of DAC-ML in
Fig. 2(a). DAC-ML is composed of two networks, namely, the
inference net and the prediction net. The inference network is
responsible for learning both task and domain statistics φt
and ωt given observations, and the prediction net makes the
prediction of ŷt based on the current observation Xt and
the learned domain and task statistics. In order to capture
both domain and task statistics, the inference network (See
Fig. 2(b)) contains two modules, i.e., the domain inference
network and the task inference network, which capture do-
main and task statistics, respectively. We then introduce the
DAC-ML algorithms for meta-training and meta-testing. Their
pseudo-codes are presented in Alg. 1 and Alg. 2 respectively.
Meta-training procedure. As is shown in Alg. 1, for each
iteration in training, we sample a sequence of urban dynamics
data from the training data (X1:T , y1:T ) to train and update
the meta-learner θ (Line 2). Following the continuous setting,
we observe the current urban dynamic features Xt and aim
to infer the task statistics and domain statistics distributions
at time step t. We sample one domain statistics ωt from the
domain inference network, and one task statistics φt from the
task inference network (Line 4-6). With sampled task statistics
φt and domain information ωt at time step t, a prediction ŷt
is made (Line 7). Then, we observe ground-truth urban status
yt, with which the negative log loss can be calculated (Line
8). We also update historical observations up to time step t
for further task and domain inference (Line 9). After finishing
loss calculation of a complete sequence, we update the meta-
learner θ with Eq. (5) (Line 11).
Meta-testing procedure. After training, the well-trained meta-
learner θ is expected to quickly adapt to a new sequence via
Alg. 2. At the beginning of the testing procedure, only one
initial urban dynamics feature X1 is observed (Line 2). Same
with other time steps t, we infer task statistics φt and domain
information ωt from the observations (Line 3-4). The inferred
statistics are used to conduct predictions (Line 5) until we



Fig. 2: Our DAC-ML architecture.

Algorithm 1 DAC-ML Meta-Training

Require: Training data X1:T , y1:T , number of training itera-
tions N , initial model parameters θ.

1: for i = 1, · · ·N do
2: Sample training batch X1:n, y1:n from the full time

series.
3: for t = 1 · · ·n do
4: Observe Xt.
5: Infer h(ωt|Xt,Dt−1; θ) and sample one ωt.
6: Infer q(φt|ωt,Xt,Dt−1; θ) and sample one φt.
7: Predict pθ(ŷt|Xt,Dt−1, ωt, φt).
8: Observe yt and incur NLL loss `t =

− log pθ(ŷt|Xt,Dt−1, ωt, φt).
9: Update Dt = {X1, y1, · · ·Xt, yt}.

10: end for
11: Update θ based on Eq. (5).
12: end for

Algorithm 2 DAC-ML Meta-Testing

Require: Testing data X1, D0 = ∅, well-trained DAC-ML
parameters θ.

1: for t = 1 · · ·T do
2: Observe Xt.
3: Infer h(ωt|Xt,Dt−1; θ) and sample one ωt.
4: Infer q(φt|ωt,Xt,Dt−1; θ) and sample one φt.
5: Predict pθ(ŷt|Xt,Dt−1, ωt, φt).
6: Observe yt, and update Dt = {X1, y1, · · ·Xt, yt}.
7: end for

observe the true urban status and update the historical urban
dynamic features for future prediction (Line 6).

D. Practical Challenges of DAC-ML

Given the DAC-ML structure and algorithms, we will tackle
two practical challenges for continuous urban dynamics pre-

diction problem, P1) How to implement the task and domain
inference networks to capture the task and domain statistics
from variable length historical data? P2) How to characterize
and represent the domains of the continuous urban dynamics
prediction problem?
Solution to P1. From the urban dynamics data, we model
both the domain and the task inference networks using Con-
vLSTMs [9] as shown in Fig. 2(b). Since the ground truth
urban status is only observed after a prediction is made,
we employ a one-step time difference approach and input a
previous step ground truth urban status yt−1 with the current
observation Xt into the inference network. For the domain
inference network, we view the hidden state output hω,t−1 at
a previous time step t − 1 as an embedding of the domain
statistics from historical data (Dt−2,Xt−1). Then, at each
time step t, we observe the current urban dynamic features
Xt and previous urban status yt−1, and input it with hω,t−1
to the domain inference network to generate the current hidden
state hω,t. hω,t is then fed as the input to a linear layer to
derive the mean and log variance for the Gaussian distribution
of domain statistics h(ωt|Xt,Dt−1; θ). The hidden state hω,t
also serves as the input to the next step domain statistics
inference. A domain statistics ωt is sampled according to such
distribution. Similarly, the task inference network works the
same way except that we input the task inference network
with an additional domain statistics ωt sampled from its
distribution h(ωt|Xt,Dt−1; θ). This fulfills the dependency of
task statistics on the domain information.

Considering that Xt is a tensor for each time slot t record-
ing urban dynamic features of surrounding ` grid cells, we
use ConvLSTM to emphasize the spatial correlations among
locations rather than the LSTM network.
Solution to P2. Fig. 1 illustrates that the urban dynamics
patterns across months show significant changes, which is
one crucial dimension of the underlying domain. As observed
in [23], [24] the urban dynamics patterns shift across months,



Fig. 3: Map gridding and target grid cells and regions.

weeks, and days. Hence, we model the domain inference
network with three independent ConvLSTM components as
is shown in Fig. 2(c). Here, each component models temporal
uncertainties from one temporal granularity. Fig. 2(c) shows
three such granularities, namely, monthly, weekly and daily.

To train and distinguish the month, week, and day domain
inference components, we feed them with different data in
addition to the current observations Xt and yt−1. Specifi-
cally, we follow [24], and sample historical observations that
share monthly, weekly, and daily information to the month,
week, and day inference components, respectively. At time
slot t, the sampled historical observations contain samples
[Xt−b tp c·p,Xt−(b tp c−1)·p, · · · ,Xt−p], where p is a fixed pe-
riod, i.e., one month, week, day. We average the sampled
historical observations, Xt =

1
b tp c

∑b tp c
l=1 Xt−l·p, to construct

the input for domain inference net at different granularities.

IV. EXPERIMENTS

In this section, we evaluate the performance of the DAC-ML
framework using three real-world urban dynamics datasets,
including (1) traffic speed, (2) vehicle inflow, and (3) travel
demand. These datasets were collected from traffic data in
Shenzhen, China, from July 1st to December 31st in 2016.
Our experimental results on these datasets show that i) DAC-
ML outperforms all baselines in predicting urban dynamics
along the timeline (See Section IV-C); ii) the domain infor-
mation disentangled and extracted from the domain inference
networks (in our DAC-ML model) successfully captures the
domain shifts in urban dynamics (See Section IV-D); and iii)
our DAC-ML model is robust to changes of various hyper-
parameters (See Section IV-E).

A. Data Descriptions and Preparation

Dataset description. Using the map data from Open-
StreetMap [25], we partition the Shenzhen City in China into
1km× 1km grid cells, resulting in a total of 1,934 valid grid
cells. For each target grid cell, we consider its target region
as the 5× 5 surrounding grid cells centering at the target grid
cell. This results in a total of 1, 656 possible target grid cells,
as illustrated in Fig. 3.

We extract the traffic speeds, taxi inflows and travel de-
mands from taxi GPS records collected in Shenzhen, China,
from July 1st to December 31st in 2016. We define each time
slot t as an hour-long period. Then, the taxi inflow of a time

slot t is estimated from the number of taxis that stay or arrive
at a target grid cell. The traffic speed is calculated over the
average speed of each taxi coming into a target grid cell in
time slot t. The travel demand in a target grid cell is the total
number of taxi pickups during time slot t.
Data preparation. We prepare our urban data for two urban
dynamics prediction problems in our experiments, including
the continuous predictions for traffic speed and taxi inflow,
respectively. Below, we detail the two problems with their
supporting urban dynamics features.
• Traffic speed prediction. In speed prediction, the target urban

dynamic status in each grid cell measures the average traffic
speed. A total of roughly 2, 000 time slots are available in
the time series data, where the first 80% of the sequence
is used for training a good meta-learner, and the remaining
20% is used for testing and evaluation. In this prediction,
travel demands, traffic inflow, and the time of the day are
treated as urban dynamics-related features. The objective of
this task is to predict the traffic speed of a target grid cell s
based on the available historical features and observations.

• Taxi inflow prediction. Similar to traffic speed prediction, in
the taxi inflow prediction, taxi inflow is the urban dynamic
status of interest in each grid cell s. In this instance, travel
demands, traffic speed, and the time of day are urban
dynamics-related features. We also use a time series with
roughly 2, 000 time slots for the experiment, where the first
80% portion is used for meta-training and the remaining
20% is used for meta-testing and evaluating.

B. Experimental Settings

In this section, we detail the experimental settings, including
the baseline methods and evaluation metrics. We delegate more
experiment details in Appendix A.
Baselines. We compare DAC-ML with three baselines below:
• LSTM-ML [26] stands for the LSTM meta-learner. It uses

the hidden state of an LSTM [27] to encode the current
sample Xt, the label of the previous sample yt−1, and
the history embedding ht−1 into a new embedding ht for
the next prediction. This model naturally characterizes the
temporal dependency across data points along time.

• SNAIL [18] is a state-of-the-art black-box meta-learning
approach which does not capture model uncertainty. It
assumes task separation (as a time window of a day in our
experiments), and applies the attention layers to extract task
statistics for prediction.

• cST-ML [15] is a state-of-the-art black-box Bayesian meta-
learning approach that captures task uncertainties for time
series data with clear task separation (as a time window of
a day in our experiments).

When comparing with baselines, we use the same set of
training and testing data. For methods that require task-
segmentation and supporting data, we follow their original
setups to use one day’s urban dynamics as a task for both
training and testing. For a fair comparison with such baselines,
we use the first five time slots’ urban dynamics data to enable
task adaptation for all compared methods.



(a) RMSE on traffic speed. (b) MAPE on traffic speed. (c) RMSE on taxi inflow. (d) MAPE on taxi inflow.
Fig. 4: Performance comparison in 7 consecutive hours on traffic speed and taxi inflow prediction.

(a) MAPE in 12 consecutive hours on traffic speed prediction. (b) MAPE in 12 consecutive hours on taxi inflow prediction.
Fig. 5: Domain information influence on traffic speed and taxi inflow predictions in 12 consecutive hours.

Evaluation metrics. We use mean absolute percentage error
(MAPE), i.e., MAPE = 1

T

∑T
t=1

|yt−ŷt|
yt

, and rooted mean

square error (RMSE), i.e., RMSE =
√

1
T

∑T
t=1(yt − ŷt)2 for

evaluations. Here, yt denotes the ground-truth urban status
value observed in the target grid cell s at the t-th time slot,
and ŷt is its related prediction. We use T to denote the time
span or the total number of time slots to conduct continuous
urban dynamics prediction on.

C. DAC-ML Performance

Fig. 4 summarizes the performance of our proposed DAC-
ML in comparison to three baseline methods in predicting
traffic speed and taxi inflow given historical urban dynamics
data. We predict the traffic speeds and taxi inflows in four
randomly selected target grid cells over five days for each
approach. To avoid randomness, the results shown in Fig. 4
are averaged across the four grid cells and five days. We report
the prediction errors of urban dynamics in RMSE and MAPE.

From Fig. 4, our proposed DAC-ML outperforms baselines
with the lowest overall prediction errors in RMSE and MAPE.
This is mainly because of the well extracted and disentangled
domain information and a continuous training scheme in
DAC-ML, which enables a longer term task and domain
information memorization and generalization. Moreover, the
two baselines, cST-ML and SNAIL, have in general the worst
results, comparing to both our DAC-ML and LSTM-ML. This
is because both cST-ML and SNAIL predefine the length of
the prediction task (as 5 hours in our experiment) thus ignoring
the uncertainty of the task length, while DAC-ML and LSTM-
ML use recurrent neural networks to embed and consider the
long-term historical data in the prediction. In detail, DAC-ML

outperforms all the baselines on both datasets, and improves
the best performance of the baselines by up to 36.2% in RMSE
and 30.6% of MAPE. Next, we evaluate how the domain
information extracted in DAC-ML contributes to the urban
dynamics prediction problem.

D. Impact of Extracted Domain Information

The domain information extracted in DAC-ML contributes
significantly to the urban dynamics prediction problem. In this
section, we compare alternative designs in the domain infer-
ence network for domain information extraction, including the
proposed DAC-ML with disentangled domain, DAC-ML with
entangled domain, and DAC-ML without domain. DAC-ML
with entangled domain uses one domain inference network to
extract a unifying domain representation, DAC-ML without
domain does not have a domain inference network. In Fig. 5,
we observe that DAC-ML with disentangled domain always
outperforms the other two design alternatives. First, DAC-
ML without domain fails to capture the domain shift over
time, thus performs the worst. Moreover, when comparing
both versions of DAC-ML that include a domain inference
network, DAC-ML with disentangled domain performs better
than that with entangled domain. This is because DAC-ML
with disentangled domain extracts multiple independent do-
main dimensions – daily, weekly, and monthly – thus avoiding
overfitting in the high-dimensional domain space [28], [29].

E. Ablation Studies

In this section, we investigate how the performance of
our proposed DAC-ML changes, with i) different prediction
horizons and ii) different sizes of the learned hidden states.



TABLE I: Performance on traffic speed prediction and vehicle
inflow prediction.

Methods
Traffic Speed Vehicle Inflow

1h 3h 1h 3h
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

SNAIL 5.442 0.247 4.342 0.288 5.725 0.216 5.876 0.276
cST-ML 3.719 0.241 5.604 0.361 7.255 0.246 6.367 0.333

LSTM-ML 2.871 0.201 3.754 0.243 3.771 0.130 6.230 0.282
DAC-ML 1.717 0.127 3.022 0.177 3.352 0.126 4.317 0.268

(a) Hidden state h dimensions. (b) µ and Σ dimensions.

Fig. 6: Performance in MAPE with different hyper-parameters
on traffic speed prediction.

The impact of the prediction horizon. Now, we further
examine the prediction performances on the urban dynamics,
with different prediction horizons. In the experiments, we
compare the results of the different approaches for prediction
horizons of one hour and of three hours. In Table I, we
observe that in both scenarios, our DAC-ML consistently
outperforms the three baselines. Moreover, unsurprisingly, for
all the approaches, the prediction for the 1-hour horizon has
a lower error than for the 3-hour horizon.
The impact of the hidden state size. For the hyper-parameter
analysis, we investigate how the size of hidden states h
in ConvLSTMs (inside both the task and domain inference
networks of DAC-ML) and the size of mean µ and log
variance Σ impact the model performance. Their results in
Fig. 6a and Fig. 6b show the prediction errors of traffic
speed in RMSE and MAPE, with different sizes of the hidden
states. We observe that the model performance is sensitive
to both hyper-parameters. Higher dimensions of these hidden
states lead to better performance. This is because the larger
hidden states can potentially capture more information of the
underlying domain and task. We omit the results of taxi inflow
prediction for brevity since they share the same pattern as the
traffic speed prediction.

V. RELATED WORK

In this section, we summarize the literature from three
related areas: urban dynamics prediction, meta-learning, and
continuous learning.
Urban dynamics prediction aims to predict the future urban
status, such as traffic volume, crowd flow, etc. Previous works
primarily apply traditional machine learning approaches [3]–
[6], [30], or employ deep neural networks [7]–[12], [31], [32]
to model the spatial and temporal correlations in urban data.

These methods focus on traffic prediction, and use historical
traffic data to capture correlations among the past traffic, sur-
rounding environment features and the future traffic. Specifi-
cally, ConvLSTM [9] is used for traffic accident prediction and
crowd density estimation [7], [8]. Cui et al. [10] and Yu et al.
[11] apply a combination of CNN and LSTM to predict traffic
speed. Yao et al. [31] proposes a deep multi-view spatial-
temporal network (DMVST-Net) to model temporal and spatial
correlations, and semantic information among regions with
similar temporal patterns for taxi demand prediction. Stacked
autoencoders are used for travel demand prediction in [12].
Some recent works target the uncertainties in urban dynamics
and strive to use meta-learning approaches for urban dynamics
prediction [13]–[15]. To capture the spatial-temporal correla-
tions in urban dynamics, Pan et al. [13] attempts to use a
meta-graph attention network to extract spatial correlation, and
a meta-recurrent neural network for temporal dependency for
traffic prediction. Yao et al. [14] takes another perspective, and
views different cities as different training tasks, and proposes
to meta-learn knowledge across multiple cities, which is then
leveraged to predict traffic status. The cST-ML [15] method
covers urban uncertainties with Bayesian meta-learning [16].
However, these works tend to consider the urban dynamic
uncertainties from one unified domain. In contrast to previous
works, our work models such uncertainties by modeling the
urban dynamics with high-dimensional domain shifts, and
estimates these uncertainties by developing a domain adaptable
Bayesian meta-learning framework.
Meta-learning. Meta-learning aims to learn a model from
training tasks by rapidly adapting to a novel task when
only a small number of test samples are available. There
are three lines of work tackling the meta-learning problem,
specifically, optimization-based [19], [33], model-based [18],
[34], and metrics-based [35]–[37] meta-learning algorithms.
Optimization-based models [19], [33] aim to learn from train-
ing tasks a good initialization so that it forms an appropriate
inductive bias for fast adaptation via gradient descent. Model-
based meta-learning methods [18], [34] capture task statistics
from a support dataset and output the adapted parameters for
prediction. Metrics-based meta-learning approaches [35]–[37]
endeavor to learn a distance function for comparing two differ-
ent samples from different tasks. Moreover, some recent works
focus on better capturing task uncertainty and heterogeneity
(e.g., [16], [21], [22], [38], [39]) via maintaining a knowledge
base to capture, store and generalize task-related information
for quick adaptation [38], [39]. For example, Yao et al.
[38] models knowledge base as a tree, and [39] as a graph.
Finally, many works [16], [21], [22] propose Bayesian meta-
learning approaches, which, rather than learning deterministic
task statistics, capture the distribution of the task statistics.
For example, MOCA [17] utilizes a differentiable Bayesian
changepoint detection scheme to detect potential task changes
in a sequence. In contrast to the state-of-the-art approaches,
which do not consider the uncertainties of higher-dimensional
task domains, our approach attempts to mitigate this problem
by disentangling the domain. In addition, we focus on urban



uncertainties from spatial-temporal data.
Continuous learning. Continuous learning corresponds to the
problem to learn from a streaming series of tasks and reuses
the learned information for current task prediction [40]–[42].
Most methods [40], [43]–[46] use regularization to avoid for-
getting in continual learning or put a limitation on parameter
update given a new task. Unlike these approaches, our DAC-
ML explicitly learns a prior over task and domain distributions,
automatically avoiding negative transfer by detecting task and
domain shifts and adapting to new test samples.

VI. DISCUSSIONS & CONCLUSIONS

In this paper, we solve the continuous urban dynamics pre-
diction problem from multiple domains that do not require task
segmentation. A novel domain-adaptable continuous meta-
learner (DAC-ML) is proposed, which advances Bayesian
meta-learning towards a continuous setting. The proposed
DAC-ML can learn a general urban dynamics prediction strat-
egy via extracting and disentangling task and domain statistics
from historical urban dynamics data, and capable of quick
adaptation to new observations in an online manner, leading to
improved performance in urban dynamics prediction problems.
Novel training and testing algorithms are designed for DAC-
ML, where task and domain information can be embedded
and captured continuously by ConvLSTM networks. Extensive
experiments on real-world traffic datasets (i.e., traffic speed,
taxi inflow and travel demand) are conducted to evaluate our
proposed DAC-ML method. Our experimental results demon-
strate the facts that i) DAC-ML is compatible to the continuous
prediction setting and thus outperforms baselines requiring
task segmentation, ii) DAC-ML captured domain statistics
contribute to a more precise prediction, and iii) DAC-ML’s
disentanglement strategy is an efficient approach to utilizing
domain information, leading to superior performance in urban
dynamics prediction compared to previous approaches.
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APPENDIX

A. Implementation Details

The reported RMSE and MAPE are averaged over four
randomly selected target grid cells over five days. After each
training epoch, we evaluate the average, best, and worst RMSE
and MAPE for DAC-ML and all baselines. Comparing the
average MAPE score during training, we choose the best
models for DAC-ML and all baselines. The best models are
then compared with their results presented. To support the
reproducibility of the results in this paper, we detail both the
DAC-ML and baseline implementation settings. All models are

trained using Adam optimizer with β1 = 0.5 and β2 = 0.999,
and a learning rate of 2−4 for 1,000 epochs.
• LSTM-ML is composed of a task inference network and a

posterior prediction net. For a fair comparison with the pro-
posed DAC-ML, the task inference network is implemented
with a layer of CNN following a layer of ConvLSTM. The
input channel of the CNN is 4, and the hidden channel
is 256 with a 3 × 3 kernel. The hidden channel of the
ConvLSTM is 128 with kernel 5 × 5. The output from the
ConvLSTM is then fed into two linear layers activated by
ReLU as the adapted task statistics. The inference network
is composed of two CNNs following two linear layers. The
hidden channel of the CNNs are 64 and 128, respectively,
and the kernel sizes are 3× 3 and 5× 5, respectively. The
output is then fed into a linear layer activated by ReLU and
another linear layer activated by Sigmoid.

• SNAIL contains two layers of CNN following three atten-
tion blocks sandwiched by two TC blocks. The output is
then fed into a linear layer for prediction. In detail, both
CNN layers have 64 hidden channels with kernel sizes as
3× 3 and 5× 5, respectively. The number of filters for the
TC blocks are all 128. The key sizes of the three attention
blocks are 64, 256, 512, respectively, and the value sizes
being 32, 128, 256, respectively.

• cST-ML includes a task inference network and a posterior
prediction network. The task inference network is imple-
mented with a CNN layer following a ConvLSTM layer. The
input channel of the CNN is 4, and the hidden channel is 256
with a 3× 3 kernel. The hidden channel of the ConvLSTM
is 128 with kernel 5 × 5. The output from the ConvLSTM
is then fed into one linear layer activated by ReLU, then
the output is put into two different linear layers whose
outputs work as the mean and log-variance of a Gaussian
distribution respectively. The inference network shares the
same structure with that in the LSTM-ML.

• DAC-ML has an inference network and a posterior pre-
diction network. The inference network is composed of a
domain inference network and a task inference network. To
capture monthly, weekly, and daily domain statistics, the do-
main inference network comprises three ConvLSTM-based
modules. These three modules are the same in structure as
the task inference network. Specifically, each ConvLSTM-
based module is implemented with a layer of CNN following
a layer of ConvLSTM. The input channel of the CNN is 4,
and the hidden channel is 64 with a 3×3 kernel. The hidden
channel of the ConvLSTM is 128 with kernel 5 × 5. The
three intermediate outputs from the monthly, weekly, and
daily ConvLSTM networks are added together and input
into a linear layer, the output is then fed into two different
linear layers, respectively, to get the mean and log-variance
of the domain statistics distribution. The intermediate output
from the task inference ConvLSTM network is fed into one
linear layer first and then into two different linear layers,
respectively, to get the mean and log-variance for the task
statistics prediction. The posterior prediction net shares the
same structure as that in the LSTM-ML.


