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Abstract—Mobile sensing and information technology have
enabled us to collect a large amount of mobility data from human
decision-makers, for example, GPS trajectories from taxis, Uber
cars, and passenger trip data of taking buses and trains.
Understanding and learning human decision-making strategies
from such data can potentially promote individual’s well-being
and improve the transportation service quality. Existing works on
human strategy learning, such as inverse reinforcement learning,
all model the decision-making process as a Markov decision
process, thus assuming the Markov property. In this work, we
show that such Markov property does not hold in real-world
human decision-making processes. To tackle this challenge, we
develop a Trajectory Generative Adversarial Imitation Learning
(TrajGAIL) framework. It captures the long-term decision de-
pendency by modeling the human decision processes as variable
length Markov decision processes (VLMDPs), and designs a deep-
neural-network-based framework to inversely learn the decision-
making strategy from the human agent’s historical dataset. We
validate our framework using two real world human-generated
spatial-temporal datasets including taxi driver passenger-seeking
decision data and public transit trip data. Results demonstrate
significant accuracy improvement in learning human decision-
making strategies, when comparing to baselines with Markov
property assumptions.

Index Terms—Spatial-temporal data mining, human decision
analysis, inverse reinforcement learning, imitation learning

I. INTRODUCTION

Rapid development of mobile sensing and information tech-
nology enables us to collect massive amounts of mobility data
from human decision-makers, which we call human-generated
spatial-temporal data (HSTD). Examples of emerging HSTD
include GPS trajectories collected from taxis and personal
vehicles, passenger trip data from automated fare collection
devices on buses and trains, and working traces from the
emerging gig-economy services, e.g., food delivery (Door-
Dash [1], Postmates [2]), and everyday tasks (TaskRabbit
[3]). Harnessing HSTD to extract the unique decision-making
strategies of human agents has transformative potential in
many applications, including promoting individual well-being
of gig-workers [4], [5], and improving service quality and
revenue of transportation service providers [6]–[9].

Traditional methods of learning human decision-making
strategies from HSTD, such as inverse reinforcement learning
(IRL) and imitation learning (IL) [6], [8], [9], all model

Fig. 1: Taxi drivers’ decision distributions (in polar plots) do
not follow Markov Property.
urban human decision-making processes as Markov decision
processes (MDPs). Such MDP models have a strong Markov
property assumption [10], namely, each decision made only
depends on the current state of the human agent, not on
any prior states or decisions. For example, with the Markov
property assumption, prior works commonly assume that a
taxi driver’s decision of which direction to go to find the next
passenger, should only depend on where she is, not on where
she has visited.

In reality, when human agents make decisions in spatial-
temporal spaces, they are likely to consider where they were,
what they have experienced, and what decisions they have
made, which was also suggested and supported by theories in
behavioral and psychology research, such as the goal setting
theory [11] and the ego depletion theory [12]. Moreover, Fig. 1
provides empirical evidence from real world taxi trajectory
data that such Markov property does not hold. For a taxi driver,
we extract all her passenger-seeking trajectories, that traversed
the same “state”, defined by a particular location (the orange
box in the center of the map) at the same time 10AM of
a day. Consider the driver has eight neighboring regions to
go (as decisions). The decision strategy, i.e., the probability
distribution of choosing different decisions, represented as the
polar plots, vary significantly based on where the driver was
from 1. It is common that Markov property does not hold in
many urban human decision-making scenarios (see more in
Sec IV). Essentially, human decisions potentially have long-
term dependency with their past states, and decisions. Hence,

1Note that a naive approach of redefining the state to include the past states
and actions will not work in practice, due to the variable lengths of trajectories,
and potentially huge thus computationally infeasible state space.



all existing works relying on MDP models fail to capture such
dependency.

In this paper, we make the first attempt to tackle the above
challenge by developing Trajectory Generative Adversarial
Imitation Learning (TrajGAIL) framework. It successfully
captures the long-term decision dependency by modeling
the human decision processes as variable length Markov
decision processes (VLMDPs), and designs a deep neural
network based framework to inversely learn the decision-
making strategy from the human agent’s historical dataset. Our
contributions are summarized as follows:
• We formulate the human agent sequential decision-making

process as a variable length Markov decision process
(VLMDP) that explicitly models the “history”, i.e., the past
states and decisions, as a factor influencing the current
decision (See Sec III-A).

• We develop a novel trajectory generative adversarial imita-
tion learning (TrajGAIL) model to inversely learn human
agents’ decision-making strategy (See Sec III-B).

• We validate our framework using two real world human-
generated spatial-temporal datasets, including a taxi trajec-
tory dataset representing the taxi driver’s passenger-seeking
decision processes, and a public transit trip dataset, captur-
ing the transit mode and stop choices for daily commuting.
Results show significant accuracy improvement in human
decision-making strategies, when comparing to baselines
with Markov property assumption (See Sec IV). We made
our code and unique dataset available to contribute to the
research community via an anonymous link [13].

II. OVERVIEW

In this section, we define the human strategy learning
problem and highlight the research challenges. For brevity,
we present a table of notations in Table I.

TABLE I: Notations.
Notations Descriptions
S = {s} State space.
A = {a} Action space.
T = {τ} Trajectory set.
H = {ht} History set.
π(at|st, ht−1) Policy function.
r(st, at|ht−1) Reward function.
πE(at|st, ht−1) Empirical policy from trajectory data.
P (st|ht−1) Transition function.
γ The discount factor.
η Initial state distribution.
Wq , Wk , Wv Query, key and value matrices.
X Self-attention input.
dX X’s dimension.
Q, K, V Query, key and value of X.
nhead Multi-head self-attention head number.
N Self-attention layer number.

A. Human-Generated Spatial-Temporal Data as Human De-
cision Trajectories

Human-generated spatial-temporal data (HSTD) capture se-
quential decisions made by human agents from their mobility.
For example, taxi GPS trajectories represent the decisions from
taxi drivers when completing a passenger-seeking task; trip
data from automated fare collection devices on buses and trains
infer the choices from passengers of which transit mode and

Fig. 2: Illustrations of state, action, trajectory and history.
transfer stops to choose for daily commute. As a result, HSTD
can be viewed as a set of trajectories, where human agents
traverse a series of spatial-temporal states by following a
sequence of decisions (i.e., actions). We formally define these
terms below.
Definition 1: A (spatial-temporal) state2 s represents a
location in latitude lat and longitude lng, and a time stamp t,
namely, s = 〈lat, lng, t〉. Below, we will simply use state for
spatial-temporal state for brevity.

Note that each (spatial-temporal) state is associated with a
set of features, e.g., traffic speed and volume of the nearby
area, characterizing what a human agent considers when
making decisions.
Definition 2: An action a represents a decision a human agent
makes at a state s, when completing a task in a geographic
region. By following an action a, the human agent transits
from s to s′. For example, when a taxi is vacant, the taxi
driver can choose different directions as actions to go to find
the next passenger.
Definition 3: A trajectory τ is a sequence of states and ac-
tions that a human agent traverses and takes, when completing
a task in a geographic region, i.e., τ = (s1, a1, · · · , sT , aT ),
where T is the length of τ . Furthermore, T = {τ1, · · · , τm}
denotes a trajectory set, with m trajectories generated by
human agents.
Definition 4: History ht−1. Given a state st, i.e., the t-th state
of a trajectory, ht−1 = (s1, a1, · · · , st−1, at−1) represents the
history of the trajectory at step t, including all states and
actions prior to the t-th step.
An illustration example. Taking the passenger-seeking pro-
cess as an example, a taxi driver traverses geographic regions
over time to find the next passengers. When the taxi driver
finds a passenger, a passenger-seeking trajectory is completed.
Fig. 2 shows three trajectories τ1, τ2 and τ3, each as a sequence
of states si (as red blocks, representing the spatial-temporal
region) and actions ai (as green arrows, representing the
moving directions the driver can choose). A history h3 of
trajectory τ1 at step 4 is colored in blue as a sequence of
states and actions prior to step 4.
B. Human Decision-Making Strategy

Each human agent has her own decision-making strategy
to choose actions at different spatial-temporal states when
completing a task. The human decision-making strategy can

2In defining a Markov decision process, some works use states [14], [15],
and others use observations [16]. We use state to be consistent with [14], [15].



be characterized by two inherent functions (as defined below)
of the human agents, namely i) policy function (probability
distribution of actions) and ii) reward function (evaluating how
effective a next action is).
Definition 5: Policy function π(at|st, ht−1) of an agent
characterizes the probability distribution to choose an action at
at step t, given the state st and the trajectory history ht−1. The
policy function governs how a human agent makes decisions
at different circumstances.
Definition 6: Reward function r(st, at|ht−1) captures the
“reward” the human agent receives when choosing an action
at given the state st, and the history ht−1.

For simplicity in notation, in policy and reward func-
tions, the input state s represents both the spatial-temporal
characteristics 〈lat, lng, t〉 and all the state features. Simply
stated, a policy function controls how the agent chooses an
action, and a reward function governs how the agent evaluates
states and actions. Human agents are adapting policies for
higher total reward when completing a task. As a result,
each human agent possesses both policy and reward functions
when making decisions, which together represent the human
decision-making strategy.
C. Human Strategy Learning Problem
Problem Definition. Given a set of decision-making trajecto-
ries T generated by a human agent, we aim to inversely learn
the decision-making strategy of the agent, namely, both policy
function π(a|s, h) and reward function r(s, a|h).
Challenges. The proposed human strategy learning problem
is challenging in two aspects: (C1) How to characterize
the temporal dynamics of a human agent’s decision-making
strategy (as observed in Fig. 1)? (C2) Given policy and reward
functions hinge on each other and are generally non-linear
functions in nature, how to efficiently and accurately learn
both jointly?

III. METHODOLOGIES

In this section, we solve the human strategy learning prob-
lem by modeling human agent decision-making process as a
variable length Markov decision process (VLMDP) to capture
the long-term dependency across states in a trajectory (i.e.,
tackling the challenge C1, See Sec III-A), and developing a
trajectory generative adversarial imitation learning (TrajGAIL)
framework in theory and implementation to jointly learn policy
and reward functions using a generative adversarial net (GAN)
[17] structure with self-attention mechanism (addressing chal-
lenge C2, See Sec III-B).
A. Modeling Human Sequential Decision-making Process as
VLMDP

Limitations of the state-of-the-art works. There has been
a rich literature studying human sequential decision-making
processes, which are modeled as Markov decision processes
(MDPs) [18]. A basic Markov property assumption [10] made
with MDP is that each of action at made by a human
agent only depends on the current state st, not on history
ht−1, namely, the policy and reward functions of the human
agent follow π(at|st, ht−1) = π(at|st) and r(st, at) =

r(st, at|ht−1), respectively. If the Markov property holds, the
policy and reward functions of the agents should be temporally
invariant. However, as is shown in Fig. 1, the Markov property
does not generally hold in real world human decision-making
scenarios.
Human sequential decision-making processes as VLMDP.
To capture the long-term (high-order) dependency of human
decisions, we model the decision-making process as a variable
length Markov decision process [19], represented as a 5-
tuple 〈S,A, P, r, γ〉: S is a set of states, and A is a set
of actions; P is the transition probability with P (st|ht−1)
as the probability of transitioning to state st by following
history ht−1; r : S × A × H 7→ R is the bounded reward
function that outputs a reward value for a given state-action-
history triple; γ ∈ [0, 1] is a discount factor, that discounts the
future reward exponentially. The initial states are determined
by the distribution η : S 7→ [0, 1]. When an agent takes an
action at time t, it considers the current state st and the
history ht−1 = (s1, a1, · · · , st−1, at−1), i.e., all states and
actions prior to time t. We denote the set of histories as
H, i.e., ht ∈ H. Specifically, actions are chosen through a
stationary and stochastic policy π : S×H 7→ [0, 1]. A decision-
making process forms a trajectory 3 τ = (s1, a1, · · · , sT , aT ),
where T is the terminal time step, and the set of all tra-
jectories is denoted as T = {τ}. We use expectation with
respect to a policy π to denote an expectation with respect
to the trajectories it generates. For instance, Eπ[r(s, a|h)] =
Est,ht−1,at∼π[

∑T
t=1 γ

tr(st, at|ht−1)], denotes the following
sample process as s1 ∼ η, at ∼ π(·|st, ht−1), st ∼
P (st|ht−1) and each agent aims to maximize its expected
reward Eπ[r(s, a|h)].

Based on the VLMDP model, we will formulate the human
strategy learning problem and solve it by developing trajectory
adversarial imitation learning framework.

B. TrajGAIL: Trajectory Generative Adversarial Imitation
Learning

1) Theory: Now, we formally formulate the human strat-
egy learning problem based on VLMDP model, and develop
theoretical solution to the problem.
Limitation of the state-of-the-art works. In the literature,
human strategy learning problem, namely learning policy
and reward functions from human demonstration data, has
been extensively studied as apprenticeship learning, maximum
entropy inverse reinforcement learning (MaxEnt IRL) [20]–
[23] and generative adversarial imitation learning (GAIL) [24],
[25], etc. However, all these works were based on modeling
human decisions as MDPs, thus fail to capture the high order
decision dependency (as observed from our data in Fig. 1 and
many other real world scenarios). To tackle this challenge,
we develop trajectory generative adversarial imitation learn-

3In this paper we use “trajectory” to refer to both the physical trace of
a human agent from HSTD and the state-action pair sequences of an agent
in the VLMDP model because each physical “trajectory” can be mapped to
a sequence of states and actions so the two concepts are equivalent in our
problem.



Fig. 3: A detailed illustration of the TrajGAIL structure.
ing below, by theoretically extending GAIL model to adapt
VLMDP.
Trajectory Generative Adversarial Imitation Learning. The
human strategy learning problem can be formulated as P1
below. Note that P1 follows the same maximum causal entropy
principle as MaxCausalEnt IRL [23] and GAIL [24], but
explicitly incorporates the long-term decision dependency, by
adapting VLMDP model, rather than MDP.
P1: Strategy learning problem with decision dependency:

max
r

min
π

: −H(π), (1)

s.t. : Eπ[r(s, a|h)] = EπE
[r(s, a|h)], (2)∑

a∈A
π(a|s, h) = 1, ∀s ∈ S. (3)

The objective in eq. (1) is γ-discounted causal entropy,
i.e., H(π) =

∑T
t=1

∑
ht
γtπ(at|st, ht−1) log π(at|st, ht−1),

which measures the uncertainty present in a causally con-
ditioned policy distribution π(at|st, ht−1). The constraint in
eq. (2) guarantees that the expected reward of a trajectory
under the learned policy π, matches that of the empirical policy
πE (namely, the policy observed from the collected HSTD
data). The constraint in eq. (3) ensures the policy π to be a
proper probability distribution at each state. There are infinite
many feasible π’s and r’s satisfying constraints eq. (2) and
eq. (3) [20]. To break the tie, the objective function aims to
i) find the policy function π with the maximum uncertainty,
namely, without committing to any particular trajectory than
what the two constraints require, and ii) the reward function
r that enforces the constraint eq. (2) to hold.

The Problem P1 can be relaxed to the unconstrained opti-
mization problem below by introducing a Lagrangian multi-
player λ and a convex penalty function ψ(r) using augmented
Lagrangian method [26].

max
r

min
π∈Π
−ψ(r)− λH(π) + EπE [r(s, a|h)]− Eπ[r(s, a|h)], (4)

where Π is the policy probability simplex space [27], guar-
anteeing the constraint eq. (3). The convex penalty function
ψ(r) characterizes the gap between the expected rewards under
πE vs π, namely, EπE

[r(s, a|h)] − Eπ[r(s, a|h)], and the
reward function r is chosen to minimize this gap (ψ(r)), such
that the original constraint eq. (2) holds. Next, We establish
Theorem III.1 below to prove the equivalence between P1 and
a generative adversarial network (GAN) problem [17].

Theorem III.1. With a proper choice of ψ, P1 problem is
equivalent to eq. (5) below:

min
π∈Π

max
r
−λH(π) + EπE [log(r(s, a|h))] + Eπ[log(1− r(s, a|h))].

(5)

Proof (Sketch). We first define the conditional occupancy
measure ρπ of a policy π as

ρπ(st, at|ht−1) = γtπ(at|st, ht−1)P (st|ht−1),

which represents the probability distribution of a state-action
pair (st, at) at step t, when following ht−1 under the policy
π. We proved that (See Appx. B) eq. (4) is the dual problem
of

min
π∈Π
−H(π) + ψ∗(ρπE − ρπ), (6)

where ψ∗ is the conjugate of ψ. Moreover, we proved (in
Appx. B) that with a proper choice of ψ, we get

ψ∗(ρπE −ρπ) = max
r

EπE [log(r(s, a|h))]+Eπ[log(1−r(s, a|h))].

(7)
Combining eq. (6) and eq. (7) completes the proof.

Clearly, Theorem III.1 indicates that (under mild conditions)
the strategy learning problem P1 can be explained as a GAN
problem, thus can be solved using GAN framework, with
policy net π as the generator net and reward net r as the
discriminator net. We will introduce a trajectory generative
adversarial imitation learning (TrajGAIL) framework below
for practically solving the strategy learning problem P1.

2) Implementation and Architecture: In this section, we
describe the architecture of TrajGAIL for human strategy
learning with long term decision dependency, as shown in
Fig. 3. It consists of i) a GAN structure based on the solution
formulation in Theorem III.1 as shown in Fig 3(a), and ii)
a transformer decoder structure in both policy and reward
networks to capture the long-term decision dependency, i.e.,
π(a|s, h) and r(s, a|h). We will detail these two key compo-
nents below.
i) Learning decision-making strategy with GAN structure.
As is shown in Fig. 3(a), TrajGAIL is composed of a reward
net r as a discriminator and a policy net π as a generator.
Given previous history ht−1 and current state st, the policy π
outputs an action distribution following π(at|st, ht−1). Then
an action is sampled from this distribution to be combined
with ht−1 and st as a new state-action-history tuple. This



new tuple is feed into the reward net r as negative samples
to be distinguished from expert demonstrated state-action-
history tuples. We had similar observations as GAIL [24], that
there is no significant performance difference when changing
Lagrangian multiplier λ. Hence, we use no causal entropy
regularization in experiments.
ii) Capturing long-term decision dependency with trans-
former decoder network. To capture the long-term decision
dependency, we employ transformer decoder [28] as the net-
work structure in both policy net π and reward net r. The
reason of choosing transformer decoder is that other state-of-
the-art deep neural network structures, such as recurrent neural
networks (RNN) [29], gated recurrent units (GRUs) [30], long-
short term memory (LSTM) [31] and convolutional LSTM
(ConvLSTM) [32], are less efficient in long-term memoriza-
tion because of memory decay [33].

As shown in Fig. 3(b), a transformer decoder is composed of
N layers of multi-head self-attention, add & layer normaliza-
tion, and feed forward networks. The architecture in Fig. 3(b)
shows one such layer, i.e., N = 1. Next, we detail the structure
of the self-attention module in the transformer decoder.
Self-attention module. The self-attention module takes state-
action pair sequence (s1, a1, · · · , st, at) as input, and converts
it into X = [x1, · · · ,xt], with each xi = (si, ai, i) ∈ RdX ,
namely, attaching the sequence ID i to each state-action pair
(si, ai), with dX as the dimension of each xi. The self-
attention module can be implemented in either single- or multi-
head mode to process X as detailed below.
• A single-head self-attention module shown in Fig. 3(c) has
three matrices as a query matrix Wq ∈ RdX×dX , a key
matrix Wk ∈ RdX×dX and a value matrix Wv ∈ RdX×dX .
Input units [x1, · · · ,xt] are multiplied by the query, key, value
matrices, respectively to produce matrices Q = [q1, · · · ,qt]
with qi = Wqxi, K = [k1, · · · ,kt] with ki = Wkxi, and
V = [v1, · · · ,vt] with vi = Wvxi. The attention module
attends the t-th query output qt to every key output ki in K,
which are further used to compute a weighted sum of all value
outputs vi ∈ V, leading to an output bt as

bt = attn(qt,K,V) = Vᵀsoftmax(
Kqt√
dX

), (8)

where softmax(·) is a column-wise softmax operator.
• A multi-head self-attention module (with nhead > 1 heads)
runs through the single-head self-attention module nhead times
in parallel. Each input vector Xi ∈ X is chopped into
nhead pieces, with dX/nhead dimensions, and gets processed
by nhead single-head self-attention modules in parallel. The
nhead parallel outputs are simply concatenated, denoted as
bt = [bt1, · · · ,btnhead

] and linearly transformed by a matrix
WO ∈ RdX×dX as below:

MultiHead(qt,K,V,WO) = Concat(attn1; · · · ; attnnhead)WO,
(9)

attnj = attn(qtj ,Kj ,Vj), 1 ≤ j ≤ nhead. (10)

Here, matrices Qj ,Kj ,Vj (1 ≤ j ≤ nhead) and WO are
parameters to be learned.

The transformer decoder’s self-attention layer applies a
multi-headed self-attention operation over the input X fol-

lowed by position-wise feed-forward layers to produce an
output distribution (i.e., policy in π or reward score in r) over
target input units. Since self-attention and transformer decoder
allow parallelization, the time complexity is significantly re-
duced.
Algorithm 1 TrajGAIL

Require: Initial parameters of policy and reward nets, θ and
ω; expert demonstrations T = {(sj , aj)}Tj=1; batch size
B; variable length Markov decision process as a block
box (S,A, P, η, r, γ).

Ensure: A learned policy πθ and a reward functions rω .
1: for each epoch i = 0, 1, 2, ... do
2: Generate trajectories of batch size B from πi through

the process: s1 ∼ η, a ∼ πi(·|st, ht−1), st+1 ∼
P (st+1|ht); denote the generated trajectory set as T̃ .

3: Sample state-action-history sequences from T̃ and T
each with batch size B denoted as D̃ and D.

4: Update ω to increase the objective in eq. 5.
5: Compute reward r for state-action-history sequences

(s, a, h) ∈ D̃ using rωi+1 .
6: Update θ by policy gradient to decrease the objective

in eq. 5.
7: end for
8: Return the learned policy πθ and reward function rω .

TrajGAIL algorithm. Now, we are in a position to present
TrajGAIL algorithm (Alg 1) to inversely learn both policy and
reward networks using the TrajGAIL architecture (Fig. 3).

In Alg 1, both π and r are represented using neural
networks: TrajGAIL fits a parameterized policy network πθ,
with weights θ, and a reward network rω : S×A×H 7→ (0, 1),
with weights ω. TrajGAIL utilizes the Adam [34] gradient
step on ω to increase eq. 5 with respect to r, and the Trusted
Region Policy Optimization (TRPO) [35] step on θ to decrease
eq. (5) with respect to π. In each epoch i, we recursively
input the policy πi with previous history and current state to
get an action sampled which leads to the next state following
transition P (st+1|ht) working as the next iteration’s input.
Following this recursion, B trajectories are generated and
denoted as T̃ , where the initial states are sampled from η
(Line 2). With generated trajectories T̃ and expert demon-
strated trajectories T , we partition each trajectory in the two
trajectory sets as state-action-history sequences forming two
new sets – generated state-action-history sequence set D̃ and
demonstrated state-action-history sequence set D respectively;
then, we sample the state-action-history sequences from the
two partitioned sets each with a batch size of B (Line 3).
We update the reward net’s parameters ω with an Adam
[34] step following eq. (5) (Line 4). With the current reward
ri, we evaluate the reward for generated state-action history
sequences (s, a, h) ∈ D̃ (Line 5). Finally, we update θ with a
TRPO step to decrease objective in eq. (5) (line 6).

IV. EXPERIMENT

In this section, we evaluate the performances of TrajGAIL
framework using two real-world human-generated spatial-
temporal datasets. One is taxi trajectory dataset representing



the taxi driver’s passenger-seeking decision processes. The
other is public transit trip dataset, capturing the transit mode
and stop choices for daily commuting.
A. Data Description and Preparation
Taxi trajectory data were collected from July to September
in 2016 in Shenzhen, China, which contains GPS records
from 17,877 taxis. On average, a GPS record is generated
every 30 seconds. Every GPS record includes five attributes: a
unique plate ID, longitude, latitude, time stamp and passenger
indicator. The passenger indicator is a binary value with
1 indicating a passenger on board, and 0 otherwise. The
passenger-seeking trajectories are consecutive GPS records
with passenger indicator being 0.
•State space. We divide the time in a day into five-minutes
intervals and partition the road map into equal side-length
grid cells. Thus, a spatial grid cell and a five-minutes interval
uniquely define a state, which characterizes where the taxi is
and what time it is in a day.
•State features. Given a spatial-temporal state, taxi drivers
potentially consider many features of the surrounding area
when deciding where to find the next passenger. We extract
four traffic features including traffic speed, traffic volume,
travel demand, and waiting time of the state grid cell, and its
neighboring 5× 5 grid cells. Traffic volume characterizes the
average number of taxis in a state s from the historical data
showing how congested a state is. A higher traffic volume
is likely to indicate a heavy traffic, and a lower one show a
light traffic. Traffic speed estimates the average speed of all
trajectories passing a state s in the historical data. Low traffic
speed indicates that s is likely to be under traffic congestion.
Waiting time captures the average time a taxi stays in the target
state s from the historical taxi trajectory data.
•Action space. When a taxi is at a spatial-temporal state, the
driver has 10 actions to choose, including 8 neighboring grid
cells, staying at the current grid cell, or terminating the trip.
Public transit trajectory data were collected in Shenzhen,
China from June to December in 2016 from the automatic
fare collection (AFC) systems equipped in buses and subways.
Once a passenger swipes her smart card at an AFC device to
get on board a bus or enter/leave a subway station, we are
able to get their travel information including five attributes -
passenger ID, transaction type, cost, transaction time, transit
station/stop name and location. The transaction type field in-
dicates if it is an event of getting on a bus, or leaving/entering
a subway station. Most trips contain 1 to 4 transits and the
average of transits is 1.1.
•State space. Similar to taxi passenger-seeking scenario, a
spatial grid cell and a five-minutes interval define a state.
•State features. A passenger may consider various features
of the surrounding areas when deciding which subway line
or bus route to take to reach the destination. The features
we considered for this study include monetary cost, time cost
and level of convenience. Monetary calculates how much the
traveler needs to pay of taking action a at state s, e.g. the fare
of taking a subway or a bus. Time cost measures how much
time the traveler needs to spend of taking action a at state s.

TABLE II: Method architecture designs. (CNN – convolutional
neural network [38]; LSTM – long short-term memory [31];
TD – transformer decoder [28], [39].)

GAIL GAILl LSTM-GAIL TrajGAIL
π CNN CNN LSTM TD
r CNN CNN LSTM TD

Level of convenience reflects how convenient an action a is. It
measures the number of transfers needed, the number of other
transit choices available and the transit mode of the action a
at state s.
•Action space. The action space include all transit modes and
routes a passenger agent can choose, e.g., a certain bus route
or subway line with transfer or destination stations.

B. Experiment Settings
In this section, we detail the experiment settings including

the baseline methods and evaluation metrics. We randomly
split each dataset into three parts: training set (80%), valida-
tion set (10%) and test set (10%). We present performance
results from the test set in this section 4.

Baselines. We compare our proposed TrajGAIL with base-
lines below, with Table II showing the detailed neural network
architecture designs 5:
• GAIL [24]: The inputs in the policy net and reward net are

state s and state-action pair (s, a) respectively;
• GAIL` [24]: It employs the same model structure as GAIL,

but redefines the state s̃ by including a fixed `-length
history, i.e., s̃t = (sj , aj)

`
j=t−`. By introducing a fixed

length history into the state, it explicitly models the decision
dependency within a fixed length history, however, at a cost
of storage space and processing time for states. We choose
different `’s in the evaluations.

• LSTM-GAIL: This baseline implements the policy net π
and reward net r using long-short term memory (LSTM)
[31]. LSTM is one form of recurrent neural network (RNN)
that does not suffer from vanishing and exploding gradi-
ent problem [38]. It processes a variable length sequence
by incrementally adding new input into a single memory
unit and control the extent to which new content should
be memorized, old content should be erased, and current
content should be exposed using gates.
Evaluation metrics. We use four metrics below to evaluate

the performance of TrajGAIL frameworks, including i) trajec-
tory sharing percentage, ii) test trajectory log likelihood iii)
length distribution difference and iv) time complexity. Below
we detail all four evaluation metrics:
• Trajectory sharing percentage (TS). With the learned pol-

icy network π, we generate a trajectory set T̃ and compare it
with the human agent generated trajectory set T . Trajectory
sharing percentage evaluates the ratio of the shared route
distance and the total route distance of trajectories in T̃ and

4Data and code for TrajGAIL and baseline methods are available in [13].
5Note that we do not include linear reward function based strategy learning

algorithms as baselines, such MaxEntIRL [22], MaxCausalEntIRL [23], Re-
lEntIRL [36], etc, because linear reward function approximation generally fails
to capture complex real-world reward functions devised by human agents [9],
[37].



(a) Trajectory sharing percentage (TS). (b) Test trajectory log likelihood (LL). (c) Length distribution difference (LDD).

Fig. 4: Passenger-seeking policy inference performance.

(a) Trajectory sharing percentage (TS). (b) Test trajectory log likelihood (LL). (c) Length distribution difference (LDD).

Fig. 5: The performances of GAIL` over different length of history `’s.

those in T . Clearly, a higher TS indicates a better ability to
mimic the behaviors of human agents.

• Test trajectory log likelihood (LL). We divide the human
generated trajectory set into training, validation and testing
sets. LL evaluates the average log probability of trajectories
in testing set under the learned policy π. A higher LL
indicates a closer policy to that of the human agent.

• Length distribution difference (LDD) is a measure that
calculates the Kullback–Leibler divergence distance [40] be-
tween the length distribution of trajectories generated by the
learned policy π vs those of human generated trajectories.

• Processing time (PT) measures the time cost for each
training epoch in seconds, indicating the time complexity
of training process of a given learning structure.

C. Results with Passenger-seeking Dataset
Fig. 4(a)-(c) show the performance comparison results of

TrajGAIL to baseline methods in learning the passenger-
seeking strategy of taxi drivers. In particular, we choose the
fixed history length ` to 15, 30, 45 in the baseline model
GAIL`. We randomly choose 50 taxi drivers (as x-axis) to
show the results.

Clearly, TrajGAIL always outperforms baselines for all taxi
drivers. To be precise, TrajGAIL has the highest trajectory
sharing percentage on average of 76.68%, i.e., 8.72% - 46.61%
higher than other baselines (from Fig. 4(a)), the highest test
trajectory log likelihood on average about -1.21, i.e., 26.99%
-72.88% higher than other baselines (from Fig. 4(b)), and the
lowest length distribution difference on average of 0.56, i.e.,
48.30% - 81.56% lower than other baselines (from Fig. 4(c)).
Moreover, GAIL works the worst among all baselines, be-
cause it follows Markov property in design, and completely
ignores the decision dependency. However, the passenger-

Fig. 6: Trajectory length distribution in passenger-seeking data.

seeking decision-making process is complex and involves
long-term decision dependency that GAIL fails to characterize.
The performance gets improved in GAIL` with increasing
history length `. This is because a large ` allows GAIL` to
capture more decision dependency. On the other hand, LSTM-
GAIL yeilds performances in-between GAIL15 and GAIL45,
because LSTM-GAIL is capable of capturing relatively short-
term decision dependency, but not long-term, due to the
memory decay [33].
Evaluating the long-term decision dependency in
passenger-seeking scenario. Now, we further look into the
taxi passenger-seeking decision data, and evaluate how long
the decision dependency lasts along the decision-making
trajectories. We examine the performances by changing the
history length ` ∈ [1, 45] in GAIL`, where 45 the maximum
length of trajectories from our dataset. Fig. 5 shows that with
the increasing amount of history information carried in a state
(shown in the x-axis), the LDD score drops and TS and LL
increases. This indicates that the taxi drivers’ decisions are
highly dependent on all previous steps along the trajectory.

However, it is infeasible to implement GAIL` in practice



TABLE III: Performances from transit trip data.
GAIL GAIL9 LSTM-GAIL TrajGAIL

TS 64.58% 74.04% 73.90% 76.25%
LL -1.05 -0.23 -0.25 -0.22

LDD 6.16 3.42 3.62 2.55
PT (s) 2.30 4.02 13.09 3.56

due to two reasons: i) it is hard to pre-define the fixed length
`, since the maximum length may change over time; ii) it is a
waste of storage space in state variable, since trajectories have
variable lengths and most are with much shorter length than
the maximum. This is validated in Fig. 6 showing the trajectory
length distribution from passenger-seeking data. Overall, the
average trajectory length is about 11, worth of 55 minutes, and
more than 90% trajectories with length less than 23, worth of
115 minutes.
D. Results with Transit Trip Dataset

Table III shows the results of learning passengers’ strategies
on public transit mode selection, using a large set of public
transit trip data including subway trains and buses. The results
show that TrajGAIL works the best in learning the decision
policies from human commuters, with the highest trajectory
sharing percentage and test trajectory log likelihood, and the
smallest length distribution difference. Comparing to base-
lines, TrajGAIL increases the trajectory sharing percentage
by 2.21% – 11.67%, test trajectory log likelihood by 4.35%–
79.04%, and decreases the length difference distribution by
25.43%–58.60%. In terms of the processing time, TrajGAIL
is a little bit higher than GAIL, but is much lower than GAIL`,
and LSTM-GAIL. Overall, the performance improvement over
baselines is great but not as significant as that in passenger-
seeking scenario. This is because the trajectory length in
transit trip data is smaller, say, with an average length of 1.1
in transfers between different transit modes/routes, while the
trajectory length in passenger-seeking scenario is on average
11 as shown in Fig. 6. As a result, the effort of decision
dependency in transit selection scenario is weaker than that
of passenger-seeking scenario.

V. RELATED WORK

In this section, we summarize the literature works in two
related areas to our study: 1) human decision analysis, and 2)
inverse reinforcement learning.
Human Decision Analysis aims to provide logical and sys-
tematic analysis on the representation of decision-maker’s
information and preferences towards uncertain, complex and
dynamics features of the decision problem to enhance effective
decision making [41], [42]. It has been applied in many areas
such as business [43], public health [44] and urban computing
[45] with human generated behavior data. Human decision
analysis using human behavior data has been applied in various
problems. In taxi operation management, works are focusing
on dispatching [46], [47], and passenger seeking [8], [9],
[48]–[51]. In public transportation selection, [6] focuses on
commuter’s daily transit planning and [52] works on traveler’s
travel mode preferences. These works target finding an optimal
actionable solution to improve the performance/revenue of
individual decision-makers. However, all of these works focus

on finding the optimal strategies with specific problems. By
contrast, our work focuses on providing a unifying framework
to model and learn the decision-making strategies from human
generated spatial-temporal data, that are applicable to a wide
range of scenarios such as taxi driver passenger-seeking pro-
cesses, commuter transit mode choice processes, food delivery
work decision processes, etc.
Inverse Reinforcement Learning (Imitation Learning) aims
to inversely learn the reward function and policy of experts
from their demonstrations [22]–[25], [36], [53]–[55], which
models the agent’s decision making process as Markov De-
cision Processes (MDPs). Based on such Markov perproty
assumption, MaxEnt IRL [22], MaxCausalEnt IRL [23], and
RelEnt IRL [36] were proposed to learn a reward function
with maximized entropy, causal entropy, and relative entropy
of the distribution on trajectories under the learned policy,
respectively. They all assume a linear reward function of the
feature vectors associated with state-action pairs. GAIL [24],
[56] extends the above approaches (especially MaxCausalEnt
IRL) to general non-linear reward function by using generative
adversarial networks (GANs) framework. Moreover, [25] ap-
plies GAIL model in applications, such as autonomous driving.
None of these works explicitly capture the long-term decision
dependency of real world human decision-making processes.
We develop a trajectory generative adversarial imitation learn-
ing framework (TrajGAIL) to address this challenge.

VI. CONCLUSION

In this paper, we propose a trajectory generative adversarial
imitation learning (TrajGAIL) framework that inversely learn
the human decision-making strategy (as policy and reward
functions) from their generated spatial-temporal data (HSTD).
Unlike existed models which makes Markov property as-
sumption on human decision-making processes, we show that
such Markov Property does not hold in real world scenarios,
and develop TrajGAIL to i) explicitly capture the decision
dependency, and ii) jointly learn both reward and policy
functions as two deep neural networks. Moreover, we evaluate
the performances of TrajGAIL framework using two real-
world human-generated spatial-temporal datasets, including
taxi driver passenger-seeking decision data and a public transit
trip data. When comparing to baselines with Markov property
assumption, our results show significant accuracy improve-
ment in learning human decision-making strategies.
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APPENDIX

A. Conditional Occupancy Measure
Definition A.1 (Conditional Occupancy Measure). The con-
ditional occupancy measure of a policy π ∈ Π is ρπ :
S ×A×H 7→ R as ∀s ∈ S,∀a ∈ A, t ∈ [T ], we have

ρπ(st, at|ht−1) = γtπ(at|st, ht−1)P (st|ht−1),

The conditional occupancy measure can be interpreted as
the distribution of state-action pairs at step t when following
ht−1 under the policy π.

Below, we describe more details about the dataset prepara-
tion and experiment settings to help reproducibility. The data
and code for trajGAIL and baselines are available at [13].

B. Proof to Theorem III.1

The proof to theorem III.1 follows the procedure of firstly
showing the relationship and mutual equivalence of a policy π
and its conditional occupancy measure ρπ , and using this result
to show that reward r and conditional occupancy measure ρπ
form a saddle point in the optimization problem of eq. (4),
and finally, with a specific choice of reward r regularizer ψ,
we can show the result in Theorem III.1.
Lemma A.1. (Theorem 2 of [54]) If ρ ∈ U , ρ is the occupancy
measure for πρ(at|st, ht−1) , ρ(at,st|ht−1)∑

at′
ρ(at′,st|ht−1)

, and πρ is
the only policy whose conditional occupancy measure is ρ.

Lemma A.2. Let

H̄(ρ) = −
T∑
t=1

∑
ht

ρ(st, at|ht−1) log(
ρ(st, at|ht−1)∑
at′ ρ(st, at′|ht−1)

).

Then, H̄ is strictly concave, and for all π ∈ Π and ρ ∈ U ,
we have H(π) = H̄(ρπ) and H̄(ρ) = H(πρ).

Proof (Sketch). The concavity can be proved following the
concave function definition, that is, for any α ∈ [0, 1], we
have ρ and ρ′ as two conditional occupancy measures, such
that H̄(αρ+(1−α)ρ) ≥ αH̄(ρ)+(1−α)H̄(ρ′). The following
two equivalences are shown via expanding H(π) and H̄(ρ)
with policy π and ρ respectively and replace them with the
results of Lemma A.1 in ρπ and πρ respectively.

The two lemmas together allow us to freely switch between
π and ρπ when considering functions involving causal entropy
and expected rewards, as in the following lemma:
Lemma A.3. If L(π, r) = −H(π) − Eπ[r(st, at|ht−1)] and
L̄ = −H̄(ρ)−

∑T
t=1

∑
ht−1

ρ(st, at|ht−1)r(st, at|ht−1), then,
for all reward functions r, L(π, r) = L̄(ρπ, r) for all policies
π ∈ Π, and L̄(ρ, r) = L(πρ, r) for all conditional occupancy
measures ρ ∈ U .

Proof. This lemma is a result of lemma A.1 and A.2.

Proof to Theorem III.1. Let r̃, π̃ be the solution to eq. (4),
and πA be the solution to eq. (6), we have
πA ∈ arg min

π∈Π
−H(π) + ψ∗(ρπE − ρπ)

= arg min
π∈Π

max
r
−H(π)− ψ(r)

+

T∑
t=1

∑
ht−1

r(st, at|ht−1)
(
ρE(st, at|ht−1)− ρ(st, at|ht−1)

)
,

where ρE is the conditional occupancy measure of expert
policy πE .

We wish to show that πA = π̃. To do this, let ρA be the
conditional occupancy measure of πA, let ρ̃ be the conditional
occupancy measure of π, and define L̄ : U × RS×A 7→ R by
L̄(ρ, r) =− H̄(ρ)− ψ(r)+

T∑
t=1

∑
ht−1

r(st, at|ht−1)
(
ρE(st, at|ht−1)− ρ(st, at|ht−1)

)
.

The following relationships then hold, due to Lemma A.3:
ρA ∈ arg min

ρ∈U
max
r
L̄(ρ, r),

r̃ ∈ arg max
r

min
ρ∈U

L̄(ρ, r),

ρ̃ ∈ arg min
ρ∈U

L̄(ρ, r̃).

Now U is compact and convex and RS×A×H is convex due to
lemma A.1; furthermore, due to convexity of −H̄ (lemma A.2)
and ψ, we also have that L̄(·, r) is convex for all r, and that
L̄(ρ, ·) is concave for all ρ. Therefore, we can use minimax
duality:

min
ρ∈U

max
r
L̄(ρ, r) = max

r
min
ρ∈U

L̄(ρ, r).

Hence, (ρ, r̃) is a saddle point of L̄, which implies that
ρA ∈ arg min

ρ∈U
L̄(ρ, r̃).

Since L̄(·, r) is strictly convex for all r, the above equations
imply ρA = ρ̃. Since policies corresponding to occupancy
measures are unique we get πA = π̃.

Then, we choose ψ as

ψ(r) =

{EπE [g(r(s, a|h))] if r(s, a|h) > 0,

+∞ o.w.

where
gφ(x) =

{
x− log(1− ex) if x > 0,

+∞ o.w.

With the above choice, we derive the conjugate of ψ to obtain

ψ∗(ρE − ρ) = max
r

T∑
t=1

∑
ht

ρ(st, at|ht−1) log(
1

1 + e−r(st,at|ht−1)
)

+ ρπE (st, at|ht−1) log(1− 1

1 + e−r(st,at|ht−1)
).

(11)

Since function y = 1
1+e−x , x ∈ (−∞,+∞) is monotonically

increasing, we denote D(s, a|h) = 1
1+e−r(s,a|h) as the reward

signal. Therefore, we have ψ∗(ρE − ρ) to be
max
D∈(0,1)

EπE [log(D(st, at|ht−1))] + Eπ[log(1−D(st, at|ht−1))].

For simplicity and less confusion, in the main text we still
use r instead of D. Combining eq. (6) and eq. (11) completes
the proof.


