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Abstract

Lightweight neural networks refer to deep networks with
small numbers of parameters, which can be deployed in
resource-limited hardware such as embedded systems. To
learn such lightweight networks effectively and efficiently, in
this paper we propose a novel convolutional layer, namely
Channel-Split Recurrent Convolution (CSR-Conv), where
we split the output channels to generate data sequences with
length T as the input to the recurrent layers with shared
weights. As a consequence, we can construct lightweight
convolutional networks by simply replacing (some) linear
convolutional layers with CSR-Conv layers. We prove that
under mild conditions the model size decreases with the rate
of O( 1

T 2 ). Empirically we demonstrate the state-of-the-art
performance using VGG-16, ResNet-50, ResNet-56, ResNet-
110, DenseNet-40, MobileNet, and EfficientNet as backbone
networks on CIFAR-10 and ImageNet. Codes can be found
on https://github.com/tuaxon/CSR Conv.

1. Introduction
Convolutional neural networks (CNNs) have revolution-

ized computer vision by achieving state-of-the-art (SOTA)
performance on many applications. In practice, there are
many applications utilizing CNNs. As shown in Fig. 1, Se-
mantic Segmentation aims to label each pixel of an image
with a corresponding class of what is being represented [17],
and Classification Task classifies images based on its main
characters [31]. Besides, if there are more objects in one
image, we need to detect those objects [51] and find cor-
responding pixels [43]. The impressive improvement usu-
ally comes with a substantial increase in the number of pa-
rameters (i.e., model size) which is undesirable in many
real-world applications [14, 15], such as embedded systems
where the computing resources (e.g., processor and memory)
in the hardware are limited. We list some ad-hoc tasks in

Figure 1: Illustration of various image processing tasks.

Figure 2: Applications that need lightweight networks.

Fig. 2 where lightweight models are needed, like face recog-
nition on a cellphone, auto piloting with object detection on
cars or trucks, pedestrians re-identification on CCTV cam-
eras and vision-related tasks for a robot. Therefore, how
to design/learn lightweight neural networks, i.e., reducing
storage requirement in parameters while achieving good per-
formance, is becoming increasingly demanded [52, 34, 55].

Generally speaking, there are two families of approaches
for learning lightweight networks in the literature: (1) net-
work architecture design/search, and (2) network compres-
sion. Typical works in the former family include SqueezeNet
[27], MobileNet [52], ShuffleNet [75], EfficientNet [60],
MnasNet [59], and ProxylessNAS [2]. Such approaches fo-
cus on developing network architectures (e.g., using small
convolutional filters) to satisfy certain requirements such
as model size while achieving good performance for the
applications. The latter family includes approaches such
as compression with learning [50, 23, 75] or after learning
[16, 32], whose basic ideas are to remove the network re-
dundancy by imposing some structural assumptions on the
convolutional filters. Nice surveys on this topic are in [9, 46].

Motivation. Intuitively, reducing the number of parameters



Figure 3: Comparison with 256 input channels and 128 output channels among (a) depth-wise separable convolution, (b)
group convolution, and (c) our CSR-Conv using vanilla RNNs. The linear convolutional operation is denoted as (#input
channels, filter size, #output channels) and vertical small rectangles in (c) denote ReLU activation functions.

in each convolutional layer can significantly compact a given
network. However, this may lead to poor network generaliza-
tion, as wider networks are shown to effectively improve the
performance [73, 60]. To compensate for the performance
loss due to model size reduction (i.e., lightweight networks),
we are motivated by the following works:

• Deeper Networks: In complement to the universal approxi-
mation theorem [7], recent works such as [45] have shown
that with the increase of network depth, the number of hid-
den neurons can be dramatically reduced to approximate a
function with similar expressive power. This motivates us
to construct a deeper network using narrow networks.

• Visual Transformer (ViT): Recently [11] demonstrated ex-
cellent performance on image recognition using ViT that
are designed to handle sequential input data, similar to
recurrent neural networks (RNNs). In their work, each
image is divided into 16×16 patches in the spatial domain,
and then fed into ViT as an input data sequence. This mo-
tivates us to explore RNNs (not ViT due to its large model
size) in different ways to learn lightweight networks.

Our proposed approach and contributions. Based on con-
siderations above, we propose a novel convolutional layer,
namely Channel-Split Recurrent Convolution (CSR-Conv),
as illustrated in Fig. 3(c) where the 256 input channels are
equally split into 4 groups, fed into a recurrent convolutional
layer (implemented using a vanilla RNN in the figure as
demonstrated) as input, and the hidden states in the RNN are
concatenated to generate the 128 output channels. Compared
with depth-wise separable convolution (used in MobileNet
[52]) and group convolution (used in ShuffleNet [75] and
ResNeXt [67]) in Fig. 3(a-b), respectively, we can see clearly
that our key difference is to replace each linear convolution
with a recurrent convolution. As a result, if imaging each fig-
ure as a graph where all the linear convolutions are denoted
by nodes, then the depths (i.e., the longest paths) between
node “split” and node “concat” in the figures are different:
in Fig. 3(a-b) the depths are both 2, while in Fig. 3(c) the

depth is 5. In other words, recurrent convolution can lead to
deeper network architectures, which is beneficial for learning
lightweight convolutional networks.

We are aware that the integration of RNNs with con-
volution for deep learning has been explored in literatures
[62, 58, 53, 47, 56]. However, to the best of our knowledge,
we are the first to explore the applicability of recurrent deep
models (e.g., RNNs, GRUs, LSTM) as general recurrent con-
volutional layers to learn lightweight CNNs. Given a back-
bone such as VGGNet [54] or ResNet [18], we can easily
replace its linear convolutional layers using our CSR-Conv
to reduce the model size, achieving a deeper network while
preserving its performance1. We analyze the relationship
between model size and CSR-Conv to show its controllable
model compression rate. We also demonstrate SOTA per-
formance of our approach based on seven existing network
architectures on CIFAR-10 [30] and ImageNet [8] datasets.

2. Related Works
Network compression. Weight pruning [16, 37] aims at
reducing non-significant weights to reduce computation and
memory usage of a model. Other than that, filter level prun-
ing which leads to the removal of the corresponding feature
maps is also studied intensively [19, 35]. Regularization con-
straints are also introduced in pruning [42, 26]. Low-rank
factorization [57, 72] aims to decompose the large weight
matrices in the convolutional layers into smaller matrices
with fewer parameters. Knowledge distillation [21, 49] aims
to force a smaller student network to fit specific features
from a larger teacher network for knowledge transfer.

Variants of convolutional operator for compression. [10]
proposed using a linear combination of basis functions to
predict parameters for compression. [1] proposed encoding
convolutions by few lookups to a dictionary trained to cover

1Certainly we can design new networks using our standalone CSR-Conv
layers, but this is beyond the scope of this paper. In this paper, we only
focus on learning lightweight networks given certain backbone networks.



the space of weights in CNNs. [66] presented a parameter-
free, FLOP-free “shift” operation as an alternative to spa-
tial convolutions. [13] proposed channel-wise convolutions,
which replace dense connections among feature maps with
sparse ones in CNNs. [39] proposed an efficient CircConv
operator based on the presumed circulant structures of con-
volutional filters where Fast Fourier Transform (FFT) can
be used to compute the filter responses in feed-forward and
inverse FFT can be applied in back-propagation.
Recurrent neural networks. RNNs have achieved signifi-
cant success in learning complex patterns for sequential input
data, and have been widely used in computer vision [74, 6].
At each time step, an RNN updates the state vector based
on the current state and input data. Subsequently, RNNs
output the predictions as a function of the hidden states. The
model parameters are learned by minimizing an empirical
loss. In the literature, there are significant amount of works
on developing RNNs such as, just to name a few, long short-
term memory (LSTM) [22], gated recurrent unit (GRU) [5],
FastGRNN [33], antisymmetric RNN [3], incremental RNN
[28], and Lipschitz RNN [12].
Recurrent convolutional neural networks (RCNN). [38]
proposed incorporating the recurrent connections in each
convolutional layer to generate features with different res-
olutions. [62] added a gate to the recurrent connections in
RCNN to control context modulation and balance the feed-
forward information and the recurrent information. [29]
imposed very deep recursive layers to improve performance
without introducing new parameters for additional convo-
lutions. [58] developed a recursive CNN with the residual
connection. [53] replaced vanilla RNN architecture with an
LSTM structure in RCNN. [47] used dilated convolution in
the RCNN to reduce computational complexity.

3. Our Approach
3.1. Problem Definition

In this paper, we only focus on learning lightweight con-
volutional networks by replacing some linear convolutions
with CSR-Conv in a given backbone network such as VG-
GNet or ResNet, so that the model size can satisfy certain
requirements. We will not design or propose new network
architectures.

Specifically, given a backbone network with L convolu-
tional layers, a desirable model compression rate ρM (this
constraint is optional depending on the applications/users),
and a training dataset {x, y} ⊆ X × Y with sample x ∈ X
and label y ∈ Y , we propose the following optimization
problem as our objective for learning lightweight networks:

min
ω,T ∈ZL

E{x,y}ℓ
(
f(x;ω, T ), y

)
, s.t.

MC

MB
≈ 1− ρM , (1)

where f denotes the modified network with CSR-Conv

Table 1: Illustration of our CSR-Conv-4 architecture in Tab.
2 for VGG-16 with T = 5, where the parameters in the 6th-
13th convolutional layers are converted to the parameters
U,V in CSR-Conv with the same spatial sizes.

Layer VGG-16 Ours #Param (ρM )
Conv1 [3×64] [3×64] 1,728(0.0%)
Conv2 [64×64] [64×64] 36,864(0.0%)
Conv3 [64×128] [64×128] 73,728(0.0%)
Conv4 [128×128] [128×128] 147,456(0.0%)
Conv5 [128×256] [128×260] 299,520(-1.6%)

Conv6 [256×256]
[52×52]
[52×52] 48,672(91.9%)

Conv7 [256×256]
[52×52]
[52×52] 48,672(91.9%)

Conv8 [256×512]
[52×103]

[103×103] 134,685(87.8%)

Conv9 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv10 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv11 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv12 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv13 [512×512]
[103×103]
[103×103] 190,962(91.9%)

FC / / 267,264(0.0%)
Total 2,022,489(86.5%)

parametrized by ω, T denotes a set of the sequence lengths
as input to the recurrent convolutional layers in CSR-Conv
(if the length is equal to 1, there will be no change to the
linear convolution), ℓ denotes the loss function, E denotes
the expectation operation, and MC ,MB denote the numbers
of parameters in the modified and backbone networks, re-
spectively. In case that achieving the exact compression rate
ρM may be impossible, we instead try to search for the best
network architectures with similar compression rates.

Grid-search solver with CSR-Conv. In contrast to network
architecture search (NAS) that is optimized in the network
architecture space, in this paper we simply use grid-search to
determine T , same as EfficientNet [60], because our search
space is much smaller than NAS given the compression
rate and backbone network. To accelerate our training, in
our implementation we further reduce our search space to
T ∈ {1, T}L, that is, a linear convolutional layer is either
unchanged or split into T groups of channels. We then
determine T > 1 using grid-search as well as learning ω.
We list an exemplar of our network implementation in Tab. 1
where the bold parts are the filter sizes in CSR-Conv. We
restrict our grid search so that the number of channels in the
backbone network is approximately preserved by the RNNs.



3.2. CSR-Conv

Split

Recurrent conv layer

Concat

RNN
GRU
LSTM

Channel-Split Recurrent Convolution 
(CSR-Conv)

Figure 4: General architecture

We illustrate the ar-
chitecture of CSR-Conv
in Fig. 4, where “Split”
and “Concat” denote
the channel split and
concatenation opera-
tions, respectively. The
in-between recurrent
convolutional layer
takes the split data
sequence as input and
outputs the hidden states
over time. It can be
implemented using an RNN, GRU, LSTM, etc. Recall that
Fig. 3 illustrates our customized implementation based on a
vanilla RNN, where the input and output are 3D features and
the network weights are 4D. For simplicity, we represent all
the input and output data as vectors, and network weights
as matrices. Specifically, we denote xl ∈ Rdl ,∀l ∈ [L] as
a dl-dim input for the l-th convolutional/recurrent layer
(xl = x, i.e., the input data to the network, when l = 0). We
will explain the architecture based on a vanilla RNN as well.
Channel split. The goal of this step is to generate data
sequence based on the input channels for further process in
the recurrent layer. Imagining that we need a sequence with
length T at the l-th convolutional layer, then we reshape xl to
a matrix Xl = [xl,t]t∈[T ] ∈ R⌈ dl

T ⌉×T where ⌈·⌉ denotes the
ceiling operator and [·]t∈[T ] denotes the vector concatenation
operator. This new matrix will be fed into the recurrent layer
column-by-column sequentially.
Vanilla RNN based recurrent convolution. We follow the
simplest RNN formulation (i.e., vanilla RNN) as below to
implement the recurrent layer:

hl,t = σ
(
UT

l hl,t−1 +VT
l xl,t

)
,hl,0 = 0,∀t ∈ [T ], (2)

where at the layer l and time step t, hl,t ∈ RDl denotes
the hidden state vector, Ul ∈ RDl×Dl ,Vl ∈ R⌈ dl

T ⌉×Dl

denote the shared state and data transition matrices in the
RNN, σ denotes the activation function such as ReLU, and
(·)T denotes the matrix transpose operator. Here we do not
take the bias term into account, because in practice we do
not observe any significant improvement with the bias term
but introducing more parameters. Note that the recurrent
layer defined in Eq. 2 can be viewed as the generalization
of the traditional linear convolution, because both will be
equivalent when T = 1. For other implementations, one can
replace the formula in Eq. 2 with the corresponding formula
to construct the recurrent layer.
Channel concatenation. Once we have the collection of
hidden state vectors, we concatenate them into a (Dl × T )-

Table 2: Summary of our results on (2nd block) CIFAR-
10 and (3rd block) ImageNet, where “#C-C” denotes the
number of CSR-Conv modules used in the networks for
learning compact networks, and “ρM” denotes the model
size compression rate.

Network Top-1 Err.(%) ρM (↓) #Param. #C-C T
VGG-16 6.04±0.05 0.0% 14.98M 0 1
CSR-Conv-1 5.89±0.06 39.3% 9.09M 5 2
CSR-Conv-2 6.01±0.10 49.0% 7.64M 4 3
CSR-Conv-3 6.16±0.10 67.2% 4.91M 6 3
CSR-Conv-4 6.35±0.08 86.5% 2.02M 9 5
CSR-Conv-5 7.08±0.12 95.0% 0.75M 12 9
ResNet-56 6.74±0.14 0.0% 0.85M 0 1
CSR-Conv-1 6.12±0.11 21.8% 0.66M 4 2
CSR-Conv-2 6.69±0.12 61.0% 0.33M 11 3
CSR-Conv-3 6.83±0.10 70.3% 0.25M 17 3
CSR-Conv-4 7.93±0.19 78.8% 0.18M 15 4
CSR-Conv-5 9.15±0.13 88.9% 0.09M 22 5
ResNet-110 6.50±0.05 0.0% 1.74M 0 1
CSR-Conv-1 5.72±0.07 17.2% 1.44M 7 2
CSR-Conv-2 5.55±0.05 36.4% 1.11M 14 2
CSR-Conv-3 6.12±0.11 61.3% 0.67M 22 3
CSR-Conv-4 7.06±0.15 79.6% 0.35M 31 4
CSR-Conv-5 8.57±0.18 87.1% 0.22M 33 5
DenseNet-40 5.19±0.04 0.0% 1.06M 0 1
CSR-Conv-1 5.19±0.12 15.9% 0.89M 19 2
CSR-Conv-2 5.13±0.09 35.2% 0.69M 11 3
CSR-Conv-3 5.09±0.14 50.3% 0.53M 22 3
CSR-Conv-4 6.01±0.13 63.7% 0.38M 23 4
CSR-Conv-5 8.30±0.15 82.4% 0.19M 34 5
MobileNet-V2 5.53±0.15 0.0% 2.24M 0 1
CSR-Conv-1 5.21±0.13 26.4% 1.65M 4 3
CSR-Conv-2 5.08±0.14 34.3% 1.47M 7 3
CSR-Conv-3 5.37±0.09 44.1% 1.25M 17 3
CSR-Conv-4 5.84±0.12 51.4% 1.09M 18 3
CSR-Conv-5 6.10±0.21 57.3% 0.95M 18 4
ResNet-50 23.85±0.23 0.0% 25.56M 0 1
CSR-Conv-1 23.51±0.27 35.7% 16.43M 10 3
CSR-Conv-2 24.61±0.24 70.3% 7.59M 15 4
EfficientNet-B0 22.90±0.23 0.0% 5.28M 0 1
CSR-Conv-1 22.34±0.31 18.9% 4.28M 3 3
CSR-Conv-2 27.59±0.31 26.3% 3.89M 4 5
MobileNet-V2 27.80±0.29 0.0% 3.50M 0 1
CSR-Conv-1 27.65±0.32 14.0% 3.01M 2 4
CSR-Conv-2 29.45±0.32 29.5% 2.47M 12 4

dim vector hl = [hT
l,t]

T to be used in further process.

3.3. Analysis

Proposition 1 (Model Size). Suppose that the numbers of
input and output channels in each convolutional layer of
the backbone network are equal to those from CSR-Conv
with sequence length T (T > 1). Then we can compute the



model size ratio, λM , between CSR-Conv in Eq. 2 and the
corresponding linear convolution as follows:

λM =
k2D(D + d)

k2DdT 2
=

(
1 +

d

D

)
1

T 2
= O

(
1

T 2

)
. (3)

Often empirically d ≤ D ⇔ 0 < d
D ≤ 1 holds. Meanwhile,

given the fact that the number of parameters in unchanged
sub-networks is trivial, the compression rate will be heavily
dominated by the number of the duplicate networks T .

Proposition 2 (FLOPs). Suppose that (1) the computational
complexity of add, multiplication, and σ is a unit operation
with one FLOP, and (2) the input and output dimension for
the backbone network can be represented as dT and DT ,
respectively. Then we can compute the FLOP ratio, λF ,
between CSR-Conv in Eq. 2 and the corresponding linear
convolution as follows:

λF =
k2WHDT (1 + 2D + 2d)

k2WHDT (1 + 2dT )
(4)

=
1 + 2D + 2d

1 + 2dT
≤

(
1 +

D

d

)
1

T
,

where the equation holds if and only if T = 1+ D
d that leads

to λF = 1.

The upper-bound in Eq. 4 indicates that the FLOPs of
CSR-Conv tends to decrease w.r.t. T approximately. For
instance, empirically our CSR-Conv-1 for ResNet-56 in Tab.
2 has the same FLOPs as ResNet-56, even with better per-
formance and smaller model size, because we set T = 2 and
d = D in CSR-Conv in our implementation. Differently,
CSR-Conv-5 can achieve 42.0% of FLOP compression rate,
compared with ResNet-56.

4. Experiments
Datasets. Following the literature, we evaluate our approach
comprehensively on CIFAR-10 [30] and ImageNet [8] for the
image classification task. CIFAR-10 consists of 50k training
images and 10k testing images from 10 classes. ImageNet is
a large dataset, which contains over 1m training images and
50k testing images from 1000 categories.
Backbone networks & baseline approaches. We conduct
experiments based on five main stream CNNs, i.e., VG-
GNet [54]2, ResNet [18]2, DenseNet [24]2, MobileNet [52]3,
and EfficientNet [60]4. To better demonstrate the effec-
tiveness of our approach in learning lightweight networks,
we mainly compare it with SOTA (1) lightweight networks
and (2) network compression methods, including L1 [34],
SSS [26], Variational Pruning [76], HRank [40], NISP [71],

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/tonylins/pytorch-mobilenet-v2
4https://github.com/lukemelas/EfficientNet-PyTorch

GAL [41], Hinge [36], CNN-FCF [35], Group Lasso [48],
L2PF [25], EGL [48] and DEGL [48], DCP-A [77], Slim-
ming [42] and GBN [70].

Implementation. We use PyTorch to implement our net-
work architecture. Following the literature as well as the
original code for each network, in our experiments we use
the SGD optimizers with the cross-entropy loss and set the
initial learning rate, momentum, and decay as 0.05, 0.9, and
0.0005, respectively. The learning rate is divided by 2 every
30 epochs on CIFAR-10 and by 10 every 10 epochs on Ima-
geNet. We use Top-1 error as our performance measure for
both datasets. We report our results based on three random
trials in terms of mean and standard deviation.

4.1. Results Summary

We summarize our results in Tab. 2 based on seven classic
network architectures. In general, we use grid search to de-
termine which convolutional layers in the backbone network
should be replaced by CSR-Conv layer. Overall, CSR-Conv
can be used to learn smaller but better lightweight networks
based on different backbones. Specifically, i). CSR-Conv
can effectively learn lightweight networks using less than
half of the model sizes of the backbone networks with no, or
only < 1% performance loss. On CIFAR-10, CSR-Conv can
even achieve ρM > 80% with 1% ∼ 3% performance loss.
ii). CSR-Conv seems to be able to improve the performance
by 0.1% ∼ 1% when ρM < 50%. iii). CSR-Conv per-
forms stably, as the standard deviation ranging from 0.04%
to 0.31%. iv). Often more CSR-Conv layers are needed to
learn more lightweight networks. Meanwhile, deeper RNNs
leads to better performance. This validates our motivation.

4.2. Comparison with Lightweight Networks

We also compare our CSR-Conv based networks with
the SOTA lightweight networks. The comparison results
are listed in Tab. 3, where we show 3 CSR-Conv based
networks with EfficientNet and MobileNet as our backbones.
It is clear that CSR-Conv with EfficientNet has the lowest
error among all the networks. The “lighter” models with the
MobileNet backbone also have similar or better performance
comparing to the networks with similar model sizes such as
MUXNet-s and DY-MobileNetV2 x0.35. Note that the DY-
MobileNetV2 x0.35 model also uses MobileNetV2 as the
backbone network, and our model can achieve significantly
better performance with even less parameters. This also
validates the effectiveness of our CSR-Conv layer. Since
these competitors are based on standard linear convolutions,
we strongly believe that our CSR-Conv layer can further
reduce the model sizes of such networks while preserving
(even improving) their performance. Also, post-processing
such as pruning can be applied to our networks to achieve
smaller networks. See Tab. 7 later for example.



Table 3: Lightweight network comparison on ImageNet in
terms of the number of parameters and top-1 error. Numbers
are cited from [65]. All the networks with model sizes
smaller than 5M are included.

Networks #Param. Err. (%)
MUXNet-xs [44] 1.8M 33.3
MUXNet-s [44] 2.4M 28.4
Ours-1 (MobileNet-V2) 2.5M 29.5
DY-MobileNetV2 x0.35 [4] 2.8M 35.1
Ours-2 (MobileNet-V2) 3.0M 27.7
ECA-Net [63] 3.3M 27.4
PVTv2-B0 [64] 3.4M 29.5
MUXNet-m [44] 3.4M 24.7
MnasNet-A1 [59] 3.9M 24.7
DY-MobileNetV2 x0.5 [4] 4.0M 30.6
Proxyless [2] 4.0M 25.4
MUXNet-l [44] 4.0M 23.4
MixNet-S [61] 4.1M 24.2
Ours-3 (Efficient-B0) 4.3M 22.3
GreedyNAS-C [69] 4.7M 23.8
DY-MobileNetV3-Small [4] 4.8M 30.3
MnasNet-A2 [59] 4.8M 24.4
ViTAE-T-Stage [68] 4.8M 23.2
PiT-Ti [20] 4.9M 25.4

Table 4: Top-1 error (%) comparison on CIFAR-10 via VGG-
16

Networks ρM (↓) Ours s-GroupConv
CSR-Conv-1 39.4% 5.89 6.23
CSR-Conv-2 49.0% 6.01 6.56
CSR-Conv-3 67.2% 6.16 7.03
CSR-Conv-4 86.5% 6.35 7.27
CSR-Conv-5 95.0% 7.08 7.82

4.3. Comparison with Network Compression

Fig. 5 illustrates our comparison with the SOTA on both
CIFAR-10 and ImageNet, where methods towards the bot-
tom right corner are preferred. We can see the performance
trends as discussed above for Tab. 2. Surprisingly, our ap-
proach forms “lower-bound” curves in each subfigure, indi-
cating that given similar model compression rates CSR-Conv
often works best. This is because of the overparameterization
in the neural networks so that we have a sufficiently large
parameter space to identify a better yet lightweight architec-
ture. Thanks to our design, CSR-Conv has the flexibility of
exploring the performance with a specific compression rate.
In summary, CSR-Conv can manage to learn lightweight net-
works effectively, consistently and robustly using different
backbone networks on large-scale complicated datasets.

Table 5: Top-1 error(%) results on ImageNet via ResNet-50

Networks ρM (↓) Ours s-GroupConv
CSR-Conv-1 35.7% 23.51 24.81
CSR-Conv-2 70.3% 24.61 25.63

4.4. Ablation Study

Impacts of the hidden state transition in vanilla RNNs.
The hidden state transition helps construct deeper networks,
compared with the backbones, to compensate for the perfor-
mance loss when learning lightweight networks. To verify
this, we compare our model with a baseline with shared
weights in group convolutions (denoted as “s-GroupConv”),
as illustrated in Fig. 3(b), to replace our CSR-RNN layers.
We then tune such networks so that the model size compres-
sion ratios are approximately the same as ours. We list some
results in Tab. 4 and Tab. 5, where we can see that in all the
cases our results are consistently better than this baseline,
demonstrating the need of the hidden state transition.

Impacts of the number of CSR-Conv layers and input
sequence length. Recall that we use grid search to seek a
lightweight network architecture to meet a certain model
size compression rate, if required. We take VGG-16 for
example to demonstrate their impacts on the performance,
as illustrated in Fig. 6. Note that we select convolutional
layers in the VGG-16 architecture in descending order. We
can see that: i). the model compression rates towards the
bottom left corner are lower and lower; ii). given the same
model size compression rate, the networks form nice “U”
shaped contours where more CSR-Conv layers need short
sequence length; iii). lightweight networks with small errors,
given compression rates, are distributed along the valley.
These observations are useful guidance for our approach on
searching for a lightweight network architecture effectively.

RNN variants, GRU, and LSTM as the recurrent layer.
Overall, we do not observe any significant performance
improvement over the vanilla RNN implementation. For
instance, to learn lightweight networks based on VGG-
16 with a model compression rate of ∼87% on CIFAR-
10, vanilla RNN, incremental RNN, and FastRNN achieve
6.35%, 6.45%, and 7.87% in terms of classification error,
respectively. Using the same amount of parameters Lipschitz
RNN achieves 6.55% error with a model compression rate of
∼78%. Similarly, we replace vanilla RNNs with GRUs and
LSTMs to learn lightweight networks based on ResNet-56
that achieve (10.9%, 7.53%) and (-18.8%, 7.80%) in terms
of (ρM , error) on CIFAR-10, respectively. These results are
worse than vanilla RNNs as well, probably due to the short
sequence length. Therefore, by default we utilize vanilla
RNNs as the recurrent layer in our CSR-Conv.

FLOP reduction. We verify the FLOP reduction of our
approach using ResNet-56 in practice and list our results in
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Figure 5: Comparison of error vs. compression rate on (a-e) CIFAR-10 and (f) ImageNet.
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Tab. 6. Recall that our main focus of the paper is to learn
lightweight networks, and FLOPs tend to decrease as well
with the increase of sequence length in general. For CSR-
Conv-1, the input and output dimensions are the same so that
T = 1 + D

d holds, and thus no drop in FLOPs exists. Such

Table 6: Comparison on CIFAR-10.
Networks Err.(%) FLOPs(↓) Param(↓)
ResNet-56 6.74 0.0% 0.0%
CSR-Conv-1 6.12 0.0% 21.8%
CSR-Conv-2 6.69 12.8% 61.0%
CSR-Conv-3 6.83 17.2% 70.3%
CSR-Conv-4 7.93 29.6% 78.8%
CSR-Conv-5 9.15 43.5% 88.9%

results in Tab. 6 also verify Prop. 2 properly.
Running time. Recall that our CSR-Conv layer leads to
deeper networks that need to be optimized/inferred sequen-
tially. Therefore, our running time is heavily dependent on
the number of CSR-Conv layers in the networks and the
bottleneck computation in the backbones. For instance, the
training time is 0.3ms per batch on a Quadro RTX 6000 GPU
when we run ResNet-56 on CIFAR-10 dataset. Under the



Table 7: Pruning results on CIFAR-10(VGG-
16)/ImageNet(Resnet-50) based on our CSR-Conv.

Network Err.(%) ρM (↓)
CSR-Conv + VGG-16 6.35 86.5%
CSR-Conv + VGG-16 + [16] 6.40 91.9%
CSR-Conv + ResNet-50 23.51 35.7%
CSR-Conv + ResNet-50 + [16] 23.90 30.4%

same setting, CSR-Conv-1 (CSR-Conv-5) involves 4 (22)
CSR-Conv layers and runs for 0.56ms (1.31ms), with the
compression rate increasing from 21.8% to 88.9%. Differ-
ently, on ImagetNet the MobileNet-V2 architecture takes
1.068s to train each batch and CSR-Conv-1 (CSR-Conv-2)
takes 1.071s (1.096s) that involves 2 (7) CSR-Conv layers.

Training curves. It is critical to make sure that our
lightweight networks are easy to train even with a small
portion of parameters and RNNs that share parameters. We
therefore illustrate our training curves of VGG-16 in Fig. 7
where ρM = 0 denotes the backbone network and the rest
are the variants of our approach. For simplicity, we only plot
the training curves of the first 100 epochs. As expected, the
networks with a higher compression rate are more difficult
to train, leading to larger training losses and test errors. Note
that the trends of loss are very similar to each other, indicat-
ing that our lightweight yet deeper networks can be trained
as easily as backbone networks.

Further compression with existing methods. Note that the
learned filters in our CSR-Conv layers are still dense, and
thus we can apply network compression methods as post-
processing to further reduce the model size. We list some
results in Tab. 7 using the classic compression algorithm in
[16] to prune our learned lightweight networks. It is apparent
that the pruning algorithm can further reduce model sizes
with marginal error increase on both datasets. These results
show that our CSR-Conv layer can be considered as being
orthogonal to the literature of network compression.

4.5. Future Work

In this work, we proposed the CSR-Conv architecture
to construct lightweight CNNs as a replacement of vanilla
convolution layers. With extensive experiments, we show
the CSR-Conv layer’s effectiveness compared to various
baselines and its potential on constructing tiny neural net-
works. However, there remain many open questions to stress
in future work. First, which recurrent unit backbones to
use. In Fig. 4, we show that the recurrent conv layer can be
implemented with different recurrent units. Though having
tested on some structures, we are curious about whether the
performance could be better if we use more “modern” archi-
tectures such as the attention mechanism, or whether GRU
or LSTM can improve the performance on more complex
tasks. Second, how to pick which layer to compress and set

a proper compression rate. For now, we have some heuristics
such as replacing latter layers rather than the first few layers.
That is the reason why our model with more parameters can
sometimes have worse performance than its “lighter” vari-
ants. However, it is interesting to see how this architecture
cooperates with NAS methods to determine the best layer
numbers and sequence length for each layer. Last but not
least, how to apply beyond GPUs. We want to implement
this architecture on edge devices like Raspberry Pi to vali-
date its performance on real world tasks. However, we would
argue that even lightweight network on GPU is critical to real
world applications. For example, tech giants like Google and
Facebook often deploy model with parameters consuming
hundreds of GBs in storage. It would be beneficial if we can
reduce the storage space with lightweight networks.

5. Conclusion
In this paper, we aim to address the problem of

lightweight network by proposing a novel yet embarrass-
ingly simple approach, CSR-Conv, that generalizes the con-
ventional convolutional layers without any explicit structural
assumption on filters. By taking the advantage of shared
parameters in RNNs, we manage to replace linear convo-
lutional layers with large number of parameters with small
RNNs that can approximate more complicated nonlinear
functions with fewer parameters. To train such RNNs, we
divide the input and output channels of convolution into
groups to generate input and output sequences. We unveil
that the model and FLOPs compression rates in our approach
depend on not only the network architecture but also the se-
quence length, i.e., quadratically and linearly, respectively.
We then conduct comprehensive experiments to evaluate
our RNN-Conv approach to compress VGG-16, ResNet-56,
ResNet-110, and DenseNet-40 on CIFAR-10, and ResNet-
50 on ImageNet. We can achieve SOTA performance with
similar training and inference speed to the original networks.
We can even further improve our results by integrating with
existing network compression algorithms such as pruning.
We hope that our approach can provide a simple baseline for
lightweight neural network research in the future.
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