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Abstract

Score-based Generative Models (SGMs) have demonstrated
remarkable generalization capabilities, e.g. generating un-
seen, but natural data. However, the greater the generaliza-
tion power, the more likely the unintended generalization,
and the more dangerous the abuse. Despite these concerns,
research on unlearning SGMs has not been explored. To
fill this gap, we first examine the current ‘gold standard’
in Machine Unlearning (MU), i.e., re-training the model
after removing the undesirable training data, and find it
does not work in SGMs. Further analysis of score func-
tions reveals that the MU ‘gold standard’ does not alter
the original score function, which explains its ineffective-
ness. Building on this insight, we propose the first Mod-
erated Score-based Generative Model (MSGM), which in-
troduces a novel score adjustment strategy that redirects
the score function away from undesirable data during the
continuous-time stochastic differential equation process. Al-
beit designed for SGMs, MSGM is a general and flexible
MU framework compatible with diverse diffusion architec-
tures, training strategies and downstream tasks. Code is
available at https://github.com/yunfengdiao/
Moderated-Score-based-Generative-Model.

1. Introduction
“The greater the power, the more dangerous the abuse.”

- Edmund Burke
Generative models has been a foundational topic in deep
learning in the past decade, e.g. Generative Adversarial Net-
works [13], Variational Autoencoders [20] and normaliz-
ing flows [7]. Recently Score-based Generative models
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Figure 1. Comparsions of score functions of Standard VE SDE,
Unseen by Re-training and MSGM (Ours) in the toy experiment.
Unseen by Re-training retains almost the same score function with
Standard VE SDE, while MSGM (red arrows in (d)) significantly
alter the original score functions (black arrows in (d)).

(SGMs) [42], Denoising Diffusion Probabilistic Models
(DDPMs) [17] and their variants become one of the dom-
inating class of generative models. In generative models,
one key research effort is to maximize their generalization
ability, often meaning generating unseen, but natural data,
e.g. images with realistic faces or stories not written by hu-
mans. However, such novel data can also be unintended and
potentially cause privacy breaches, copyright infringements,
misinformation spreading, etc. We refer to this phenomenon
as unintended generalization. Taking SGMs and DDPMs as
an example, they can reconstruct training data which should
not to be accessible [3], generate faces that are similar to a
specific person without permission [33, 35, 36], and mimic
content styles of artists unintentionally [10, 38]. Overall,
the bigger the generalization power is, the more likely the
unintended generalization is, and therefore the more detri-
mental the intended/unintended harm becomes. However, it
is not straightforward to design a new Machine Unlearning
(MU) paradigm for SGMs and cannot be achieved by adapt-
ing existing MU methods for other models. First, MUs for
DDPMs primarily aim to reduce the evidence lower bound
(ELBO) on the distribution of the forgotten data, but SGMs
need to estimate the score function with a continuous noise
schedule. This difference in the optimization goals prevents
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existing DDPM MU methods from being directly applied to
SGMs. More generally, most MU methods are designed for
conditional generation [8, 10, 14, 15, 23, 25, 45, 48], espe-
cially on text-to-image generation with conditional DDPM,
tightly coupling the MU with specific conditions, e.g. refin-
ing cross-attention layers [10–12, 25, 29]. They cannot be
applied to unconditioned generation, which is widely used
for e.g. data augmentation. Designing MU for unconditional
generation can potentially provide a universal solution to a
broader range of generative models.

To address the challenges, we propose the first Moderated
Score-based Generative Model (MSGM) for controlling the
unintended generalization. MSGM aims to overcome the lim-
itations of current ‘gold standard’ in score-based generative
unlearning, by introducing a straightforward yet effective
strategy to alter the score function. Our key idea is to deform
the original score function so that it circumvents the Not
Suitable For Generation (NSFG) data in sampling, while en-
suring that it still approximates the Suitable for Generation
(SFG) data score to maintain the generation quality. To this
end, we present two variants of MSGM for general MU. The
first is to explore the orthogonal complement space of the
original score function with respect to the NSFG data, so
that sampling will steer away from the high density area of
the NSFG data, which works well when the distributions
of NSFG and SFG are mildly separable. The second is to
explore the negatively correlated score subspace, to target
scenarios where the distributions of NSFG and SFG are very
similar. Additionally, if NSGF needs to be removed from a
pre-trained model, we propose to negate part of the original
score function locally.

Although designed for SGM, MSGM is a general and
flexible MU framework compatible with various diffusion
models and downstream tasks. To demonstrate its versatil-
ity, we conduct extensive experiments on five datasets using
SGM, DDPM, and the latent diffusion Model. The results
indicate that MSGM consistently achieves strong unlearning
performance in both unconditional and conditional genera-
tion. Furthermore, it enables zero-shot transfer of unlearning
pre-trained models to downstream tasks, including image
inpainting and reconstruction.

2. Related Work
Diffusion Models and Security&Privacy Issues. Diffu-
sion models progressively add noise to training data and
learn to reverse this process.DDPMs [17, 28] use discrete
denoising steps, while SGMs [39, 42] generalize to contin-
uous time stochastic differential equations (SDEs). Song
et al.[40] improve the training and sampling process and
achieve high-fidelity image generation. Meng et al. [26]
utilize high-order scores to accelerate the mixing speed of
synthetic data and natural image sampling. In addition to
technical improvements, SGMs have been shown to be effec-

tive across various applications, including natural language
processing[31], computational physics [19], video predic-
tion [9], audio codecs [46], medical imaging [5], etc. These
improvements in diffusion models maximize their gener-
alization ability, but it also raise the concerns about the
unintended generalization. Rando et al. [33] observed that
malicious users may bypass the safety filters in open-source
diffusion models to create disturbing content, e.g. violence
and gore. Beyond this, diffusion models are susceptible to
create misleading videos or images of individuals without
permission, potentially damaging their reputation or spread-
ing misinformation [35, 36]. Additionally, these models can
mimic various art styles, potentially infringing on portrait
and intellectual property rights [10, 38].
Machine Unlearning in Generative Model. MU enables
models to selectively forget the undesirable content for pri-
vacy, security or adaptability purposes. Early research has
explored numerous MU methods on supervised learning
tasks [37], such as image classification [44]. However, Fan
et al. [8] demonstrated that existing MU for image classi-
fication cannot be applied in image generation. This gap
highlights the urgent need for effective MU techniques in
generative models. Very recently, new MU schemes have
been proposed for different types of generative models, in-
cluding unlearning in VAEs [2, 27], GANs [21, 43] and
DDPMs [45], especially for text-to-image conditional gener-
ation [8, 10, 14, 15, 23, 48]. However, SGM for MU is still
largely missing. More importantly, contrary to the common
belief that Unseen by Re-training is the ‘gold standard’ in
MU [44], we empirically found it is ineffective in SGM. This
motivates us to develop a new SGM MU that can control
the unintended generalization and surpass the previous ‘gold
standard’ in MU.

3. Methodology

3.1. Preliminaries

Machine Unlearning in Generative Model. Let D =
{xi}Ni=1 ∈ RD be the training data, following the distri-
bution xi ∼ pd. Let Df = {xu

i }Mi=1 ⊆ D denote the
Not Suitable For Generation (NSFG) data following the
distribution pf (x). The remaining data, Dg = D\Df =
{xg

i }
N−M
i=1 ∼ pg(x), represents the Suitable For Generation

(SFG) data. Our goal is to enable the generative model to
avoid generating NSFG samples while maintaining the qual-
ity of image generation for SFG data. We refer to such a
generative model as an unlearning generative model. We
use the symbol p to denote either a probability distribution
or its probability density or mass function depending on the
context.
Score-Based Generative Modeling with SDEs. The
two main components of a score-based SDE generative
model [42] are the forward process and the reverse pro-
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cess. The forward process {x(t) ∈ Rd}Tt=0 transforming
data from the distribution pdata(x) to a simple noise distribu-
tion with a continuous-time stochastic differential equation
(SDE):

dx = f(x, t)dt+ g(t)dw, t ∈ [0, T ], (1)

where f : Rd → Rd is called the drift, g ∈ R is called the
diffusion, and w represents the standard Brownian Motion.
Let pt(x) denote the density of x(t). At time t = 0, the
initial distribution of x(0) follows p0 := pdata, while at
time t = T , x(T ) adheres to pT which is normally an easy-
to-sample prior distribution such as Gaussian.

Given samples from the prior, the reverse process converts
them into data samples via a reverse-time SDE:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄, (2)

where w̄ is a Brownian motion, and dt represents an in-
finitesimal negative time step. Running the reverse process
requires estimating the score function of the forward process,
which is typically done by training a neural network with a
score-matching objective:

min
θ

Etλ(t) {Ex(0)Ex(t)|x(0) [∥sθ(x(t), t)

−∇x(t) log p0t(x(t) | x(0))∥22
]}

,
(3)

where x(0) ∼ p0(x) and x(t) ∼ p0t(x(t) | x(0)), t ∼
U(0, T ) is a uniform distribution over [0, T ], p0t(x(t) |
x(0)) denotes the transition probability from x(0) to x(t),
and λ(t) ∈ R>0 denotes a positive weighting function.
Other than Eq. (3), other score matching objectives, such
as sliced score matching [41] and finite-difference score
matching [30] are also applicable.

3.2. Motivation-Unintended Generalization
Two mainstream mechanisms for MU are commonly em-
ployed: (1) Erasing by Fine-tuning, which removes learned
NSFG features from a pre-trained generator, and (2) Un-
seen by Re-training, which re-trains the generator on filtered
data. The latter is widely regarded as the ‘gold standard’
in MU [8, 44], as its superior performance over fine-tuning
methods [47].

Unfortunately, the ‘gold standard’ does not work for
SGMs. Specifically, we demonstrate that even after remov-
ing NSFG data, SGMs can still generate samples resembling
the unlearned features. To formalize this phenomenon, we
design a synthetic experiment (Fig. 2) using a mixture of 2D
Gaussians:

pdata =
4

5
N ((−2,−2), I)︸ ︷︷ ︸

Dg

+
2

5
N ((0, 0), I)︸ ︷︷ ︸

Df

+
4

5
N ((2, 2), I)︸ ︷︷ ︸

Dg

,

where Df represents the NSFG data and Dg is the rest data.
The data distribution is shown in Fig. 2 (a)&(c) Left. We
train a Variance Exploding Stochastic Differential Equation
(VE SDE) model [42], referred to as the standard VE SDE,

Table 1. The Negative log-likelihood (NLL) values of different
methods with respect to the data from pdata.

Test Standard Unseen MSGM

Dg 10.91 10.63 10.64
Df 10.73 11.59 39.01

which after training generates a data distribution shown in
Fig. 2 (a) Right. Clearly, the standard VE SDE learns to
generate all data. After using Unseen by Re-training, VE
SDE can forget some of the NSFG data, shown in Fig. 2
(b) Right, but not completely forget them. This is a typical
example of unintended generalization.

Besides visual inspection, we quantify the generation
probability of NSFG and SFG data in terms of Negative Log-
likelihood (NLL) given different generators in Tab. 1. For
Standard VE SDE, it is reasonable for Dg and Df to have
similar likelihoods, as both data are observed during training.
However, for Unseen by Re-training, the likelihood of Df is
almost the same as Dg. This demonstrates that Unseen by
Re-training cannot force the generator to forget the NSFG
data well. The visualization of the score functions in Fig. 1
shows that Unseen by Re-training does not alter the original
score function of Standard VE SDE, explaining why VE
SDE under Unseen by Re-training can still generate NSFG
data. We further investigate the existence of unintended
generalization in widely-used real-world datasets. Specif-
ically, we conduct experiments on the CELEBA [1] and
MNIST [24] datasets. For the CELEBA dataset, we exclude
training samples containing the ‘bang’ attribute. As illus-
trated in Fig. 3 (left), the model trained under the Unseen by
Re-training paradigm retains the capability to generate real-
istic images with the ‘bang’ feature, despite its absence from
the training data. Similarly, in the MNIST dataset, we re-
move all samples corresponding to the digits ‘3’ and ‘7’ from
the training set. Remarkably, the model still generates digits
that closely resemble ‘3’ and ‘7’. These findings provide
empirical evidence that unintended generalization persists
in high-dimensional data, challenging the reliability of the
current ‘gold standard’ for MU in SGMs. This raises signifi-
cant concerns regarding the robustness and trustworthiness
of existing MU methodologies.

3.3. Moderated Score-based Generative Model
To forget the NSFG data, the design object of Unseen by
Re-training is to remove Df from training data and only
approximate pg(x), i.e., decreasing the distance between
pg(x) and pθ(x),

θ∗ = argmin
θ∈Θ

D(pθ(x), pg(x)), (4)

where the distance between these two distributions
D(pθ(x), pg(x)) can be evaluated using some distance met-
rics. Using score matching, Unseen by Re-training in SGM
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Figure 2. The samples from the mixture Gaussian distribution and the samples generated by the model trained by Standard VE SDE (a),
Unseen by Re-training (b) and Unlearning Re-training (c). The left side of (a), (b) and (c) represents the training data, in which the green
part is NSFG data, and the red part is SFG data. The right side of (a), (b) and (c) represents the data generated by diffusion models.

Figure 3. Unintended generalization in high-dimensional data via
Unseen-by-Re-training: (Left) CELEBA: Persistent feature reten-
tion (yellow boxes: generated “bangs”) despite exclusion from
training data (green boxes). (Right) MNIST: Generation of un-
learned classes ‘3’&‘7’ (yellow) omitted from training set (green).

can train a score network to estimate the score of the distri-
bution pg(x),

Lg = λ(t) { Ex(0)Ex(t)[∥suθ (xg(t), t) (5)

−∇xg(t) log p0t(x
g(t) | xg(0))∥22] } , xg ∈ Dg.

Although Unseen by Re-training has approximated pg(x)
and the model generates data that follows pg(x) with high
likelihood. However, it does not consider the likelihood
of generating Df . If the distributions pf (x) and pg(x) are
close or overlapping, Unseen by Re-training may not control
the probability of generating Df (see Fig. 2). Therefore,
we propose a new Moderated Generalization strategy to
prevent the generator from generating undesired content by
maximizing the distance between pf (x) and pθ(x), while
minimizing the distance between pg(x) and pθ(x), i.e.,

argmin
θ∈Θ

{D(pθ(x), pg(x))−D(pθ(x), pf (x))} . (6)

Unlike Unseen by Re-training only approximating pg(x),
Moderated Generalization aims to ensure that the genera-
tor assigns low likelihood to Df and high likelihood to Dg.
However, it is not straightforward to instantiate Moderated
Generalization for SGMs. We need to re-consider the Moder-
ated Generalization from the view of score functions. Score
estimation is crucial in the generation process of SGMs, as
it enables the model to capture data distributions accurately.
Theoretically, as long as the score estimation is sufficiently
accurate and the forward diffusion time is infinite (allowing
the noise distribution to approach the prior distribution), dif-
fusion models can approximate any continuous data distribu-
tion with polynomial complexity under weak conditions [4].

Consequently, Eq. (6) can be reframed as a score estimation
problem, where different score functions are estimated for
pg(x) and pf (x). The challenge then becomes how to train a
time-dependent score-based model suθ (x, t) to approximate
∇xg log pt(x

g) and deviate ∇xf log pt(x
f ). For approxi-

mating pg(x), we can directly use Eq. (5). For unlearning
pf (x), if the estimated score at any moment deviates from
the score of the NSFG data on the timeline from 0 to T , the
samples generated during sampling will be far away from
the data distribution pf (x). Under this goal, a straightfor-
ward idea is to reduce the correlation between suθ (x, t) and
∇xf log pt(x

f ), i.e. minimizing the dot product of the two
scores:

Lf = λ(t) { Ex(0)Ex(t)[∥suθ (xf (t), t) (7)

· ∇xf (t) log p0t(x
f (t) | xf (0))∥22] } , xf ∈ Df .

Eq. (7) seeks for the orthogonal complement space of
∇xf log pt(x

f ), such that for ∀xf ∈ Df , suθ (x
f , t)·

∇xf log pt(x
f ) → 0. We refer to this unlearning opti-

mization as Orthogonal-Moderated Score-based Generative
Model, or Orthogonal-MSGM. However, in our preliminary
experiments, we observed that when pg(x) and pf (x) are
very close (e.g. when generating human faces where lo-
cal features like bangs or beards are undesirable) or when
suθ (x

f , t) has been learned well (e.g. erasing undesirable con-
tent from a converged pre-trained generator), strictly enforc-
ing the orthogonality constraint in ∇xf log pt(x

f ) becomes
challenging. To address this issue, we expand the search
space by relaxing the orthogonality constraint to a negatively
correlated score subspace, or an Obtuse half-space, defined
by suθ (x

f (t), t)· ∇xf log pt(x
f ) < 0, ∀xf ∈ Df . This

relaxation leads us to propose a new unlearning objective
called Obtuse-MSGM:

Lf =λ(t) { Ex(0)Ex(t)[s
u
θ (x

f (t), t) (8)

· ∇xf (t) log p0t(x
f (t) | xf (0))] } , xf ∈ Df .

The final loss of MSGM can be expressed as:

min
θ

LMSGM = min
θ

Et∼U(0,T ) (αLg + (1− α)Lf ) , (9)

where U(0, T ) is a uniform distribution over [0, T ],
p0t(x(t) | x(0)) denotes the transition probability from x(0)
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to x(t), λ(t) ∈ R>0 denotes a positive weighting function
and α is a hyperparameter.

In contrast to Unseen by Re-training, MSGM modifies
the original function of NSFG data. To demonstrate it, we
conduct a quick experiment on the mixture Gaussian dis-
tribution to evaluate the effectiveness of MSGM. We plot
the learned scores at a randomly selected generation process
t = 0.08 in Fig. 1. The results show that the scores for both
Unseen by Re-training and Standard VESDE are quite simi-
lar, while our method alters the score distribution of NSFG
data, causing the model to steer away from high probability
density areas, thereby reducing the likelihood of generating
NSFG data. As shown in Fig. 2, compared to Unseen by
Re-training, samples generated by our method almost do not
contain NSFG data. Meanwhile, the NLL values in Tab. 1 in-
dicate a substantial decrease in the probability of generating
NSFG data.

4. Experiments

4.1. Experimental Setup

Datasets and Models. We evaluate MSGM on five
datasets, including MNIST [1], CIFAR-10 [22], STL-10 [6],
CelebA [24] and high-resoluation Imagenette [18] datasets.
In addition to evaluating MSGM on score-based models
such as the Variance Preserving (VP) SDE [42] and the VE
SDE [42], we also employ DDPM [17] to verify the general-
ization of MSGM to different types of diffusion generative
models, including the latent diffusion-based Stable Diffu-
sion (SD) [34]. Based on the characteristics of the datasets,
we performed class forgetting experiments on MNIST, CI-
FAR10, STL-10, and Imagenette datasets, while applying
attribute elimination generation on CelebA dataset.

Next, we outline the datasets preparation for the exper-
iments. For MNIST, we trained the VE SDE models, se-
lecting all instances of the digits ‘3’ and ‘7’ for Df . For
CIFAR-10, we trained the VP SDE and DDPM models, se-
lecting the data labeled as ‘dog’ and ‘automobile’ classes
for Df . For STL-10, we trained the VP SDE models, se-
lecting the data labeled as the ‘airplane’ class for Df . For
CelebA, we trained the VP SDE models, selecting the fea-
ture ‘Bangs’ from the 40 available features provided for each
image to form Df . For Imagenette, we fine-tuned SD v1.4,
designating ‘tench’ class as Df .
Compared Methods. We establish the following baselines
for comprehensive comparison in our experiments: Stan-
dard, the conventionally trained generative model without
any unlearning intervention, serving as the performance ref-
erence; Unseen by Re-training (Unseen), the gold stan-
dard in MU that retrains models from scratch on sanitized
datasets; EraseDiff [45], a state-of-the-art diffusion model
unlearning method leveraging gradient ascent; and ESD [10],
a parameter-space editing approach for conditional predic-

tion adjustment. In our experiments, we evaluate two vari-
ants of our proposed method, MSGM: Orthogonal-MSGM
(Ort) and Obtuse-MSGM (Obt). For unconditional genera-
tion evaluation, we benchmark both MSGM variants against
Standard, EraseDiff, and Unseen baselines. In text-to-image
generation tasks, we compare our method against EraseDiff
and ESD, as they are specifically designed for conditional
generation scenarios. For downstream tasks, we compare
our method with Standard and Unseen, representing the ex-
tremes of naive training and full retraining, to highlight the
trade-offs between performance and unlearning.
Evaluation Metric. We employ the Unlearning Ratio
(UR) and Negative Log-Likelihood (NLL). UR measures
the percentage of generated images containing NSFG con-
tent, where a lower UR indicates a stronger capability of the
model to forget NSFG data. We use external classifiers or
CLIP to distinguish whether NSFG categories or features
have been removed from the synthetic image. For all ex-
periments, we randomly sample 10,000 images from the
model to calculate the unlearning ratio. Additionally, for
SGMs, we can accurately calculate NLL to determine the
likelihood of generating NSFG and SFG data. Higher values
indicate a lower probability of generation. For visual quality
evaluation, we follow the protocols of EraseDiff [45] to use
FID [16], CLIP embedding distance [32], PSNR and SSIM.

4.2. Class-wise/Feature-wise Ungeneration

Quantitative Results. In Tab. 2, we compare the unlearn-
ing performance with baseline methods in unconditional
generation. First, MSGM achieves the lowest unlearning
rate compared to Unseen across all datasets, indicating
that MSGM effectively unlearns the NSFG data. Second,
for Unseen by Re-training, both SFG and NSFG data ex-
hibit low NLL values, suggesting that despite the NSFG
data never being observed during the training process, the
generative model can still fit the distributions pf (x) well.
EraseDiff only slightly decreases the likelihood of generat-
ing NSFG data. In contrast, MSGM significantly reduces
the generation probability of Df via substantially increas-
ing the NLL values of the NSFG data. Additionally, al-
though both Orthogonal-MSGM and Obtuse-MSGM can
successfully unlearn undesirable data/features, their perfor-
mance varies across different scenarios. Orthogonal-MSGM
is more effective for class unlearning, while Obtuse-MSGM
is more effective for feature unlearning. We suspect that
Orthogonal-MSGM seeks orthogonal complement space of
∇xf log pt(x

f ), so that suθ (x, t) does not learn any semantic
features(see Fig. 4), hence Orthogonal-MSGM is effective
for most cases. However, when pg(x) and pf (x) are very
close, the orthogonal complement space of ∇xf log pt(x

f )
is hard to be found, hence using Obtuse-MSGM to extend the
search space (suθ (x

f (t), t)· ∇xf log pt(x
f ) < 0, ∀xf ∈ Df )

can improve the unlearning performance.
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Table 2. Quantitative results of unlearning undesirable features or classes using different unlearning methods across various datasets.

Dataset Model Feature/Class Unlearning Ratio (%) (↓) Test Negative Log-Likelihood (Dg (↓) and Df (↑))

Standard Ort Obt Unseen EraseDiff Standard Ort Obt Unseen EraseDiff

MNIST VESDE
3 11.0 0.4 1.5 1.8 1.4 Dg 2.82 3.92 3.70 3.07 3.307 15.8 0.8 3.6 2.3 1.1

Df3 and 7 26.8 1.2 5.1 4.1 2.5 2.78 13.23 12.08 3.01 3.74

CIFAR-10 VPSDE
automobile 11.2 1.9 0.9 3.4 9.7 Dg 3.12 3.22 3.28 3.09 3.09dog 13.4 10.0 11.5 10.8 8.2

Dfautomobile and dog 24.6 11.9 12.4 14.2 17.9 3.20 5.94 4.37 3.21 4.10

STL-10 VPSDE airplane 12.1 2.4 3.6 3.8 2.6 Dg 2.90 2.90 2.92 2.90 -
Df 2.19 8.94 9.25 2.32 -

CelebA VPSDE bangs 19.6 3.5 0.7 6.7 1.2 - - - - - -

Figure 4. Image generation using different unlearning methods for VE SDE on MNIST and VP SDE on CelebA. The top, middle, and
bottom rows show images generated by MU strategy Unseen, Ort and Obt respectively. NSFG images sampled from the forgetting dataset
Df are enclosed in the green box. Images generated by the different unlearning methods are enclosed in the yellow box.

Table 3. Fine-tune quantitative results for unleaning feature or class
on different datasets. The Unlearning Ratio represents the degree
of forgetting, measured by predicting the proportion of Df data in
the generated 10,000 images using CLIP.

Dataset Model Feature/Class Unlearning Ratio (%) (↓)

Stand Ort Obt Unseen EraseDiff

CIFAR-10

VPSDE
automobile 11.2 2.7 0.6 3.4 9.4

dog 13.4 8.7 8.9 10.8 5.2
automobile and dog 24.6 11.4 9.5 14.2 14.6

DDPM
automobile 13.1 3.3 1.6 2.7 3.0

dog 13.9 5.4 3.6 4.5 4.4
automobile and dog 27.0 8.7 5.2 7.2 7.4

CelebA VPSDE bangs 19.6 2.6 0.1 6.7 1.9

Table 4. Fine-tuned negative log-likelihood (NLL) values of Dg

and Df for CIFAR-10 data on VP SDE.

Test Standard Unseen Unlearning Unseen EraseDiff

Dg 2.89 3.06 4.36 2.92 3.06
Df 2.91 10.36 14.96 2.95 4.38

Qualitative Results. We report the qualitative visualization
comparison in Fig. 4 and observe that Unseen by Re-training
may not fully erase the ‘bangs’ features. For example, fa-
cial images generated by Unseen by Re-training may still
exhibit few ‘bangs’ features, even though the ‘bangs’ fea-
tures are not as long as those in Df . In contrast, MSGM
completely erases the ‘bangs’ features. An interesting phe-
nomenon is that Orthogonal-MSGM and Obtuse-MSGM
forget ‘bangs’ in different ways. For the unwanted fea-

ture, Orthogonal-MSGM replaced the ‘bangs’ with noisy
images, while Obtuse-MSGM generate features opposite
to the ‘bangs’ in the score distribution, such as ‘no bangs’
or ‘hat’. This occurs because Orthogonal-MSGM seeks the
orthogonal complement space of ∇xf log pt(x

f ), resulting
in suθ (x, t) learning nothing. In contrast, suθ (x, t) in Obtuse-
MSGM learns the inverse of ∇xf log pt(x

f ), which may
generate the ‘inverse’ feature of ‘bangs’. The visual results
in other datasets also have the similar phenomenon, as shown
in the right side of the Fig. 4. Additionally, for SFG content
generation, MSGM shows competitive generative perfor-
mance compared to the source images, and performs well
with high-resolution images.

4.3. Unlearning DDPM and Fine-tune

MSGM is a general and flexible framework that is compati-
ble with DDPM models and fine-tuning training. The tech-
nical details of MSGM application to DDPM can be found
in supplementary material. To demonstrate this, we conduct
both class and feature unlearning on pre-trained VP SDE and
DDPM models. Tab. 3 and Tab. 4 present quantitative results
for fine-tuning experiments on different datasets using the
MSGM method. We conduct 80,000 and 30,000 iterations
of fine-tuning on SGM and DDPM architecture respectively,
across all datasets. Notably, MSGM not only achieves the
best unlearning performance on SGM but also outperforms
other baseline on DDPM, even exceeding EraseDiff, an MU
method specifically designed for DDPM-based models.
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Figure 5. Visualization of diverse unlearning methods applied
to fine-tune SD v1.4 on the Imagenette dataset. The left green
box displays NSFG images sampled from forgetting datasets. ‘pl’
indicates the pseudo-label used during training.

Figure 6. Comparison of EraseDiff using semantically similar
pseudo-label ‘cyprinoid’ (for ‘tench’) vs. our pseudo-label-free
MSGM approach.

Table 5. Unlearning text-to-image models on high-resolution Ima-
genette dataset. CR measures the classification rate of a pre-trained
classifier on generated images conditioned on the forgetting classes.

SD v1.4 ESD EraseDiff MSGM

FID of Dg(↓) 4.89 3.09 3.09 3.08
CR(↓) 0.74 0.00 0.00 0.00

4.4. Unlearning Text-to-image Generation on High-
resolution Datesets

Although MSGM was initially proposed for unconditional
generation, it is a plug-and-play unlearning strategy and
also effective for conditional generation, e.g. text-to-image
generation. To demonstrate this, we fine-tune Stable Diffu-
sion(SD) v1.4 [34] on its cross-attention layer for class-wise
forgetting. We compare with other text-to-image models
including EraseDiff [45] and ESD [10] on high-resolution
datatset Imagenette [18] and choose the ‘tench’ as the forget-
ting class. As shown in Tab. 5, MSGM achieves an FID of
3.08, outperforming the original SD v1.4 and even slightly
improving upon the performance of ESD and EraseDiff. Fur-
thermore, while ESD, EraseDiff, and MSGM all achieve a
CR value of 0, MSGM differs from other methods by directly
generating noisy images for the forgotten class, eliminating
the need for pseudo-labels from other classes. In contrast,
existing methods often rely on pseudo-labels to replace the
forgetton class, which can lead to ineffective forgetting when
semantically similar categories are used. This limitation fre-

Figure 7. The comparison of inpainting results on the CelebA
dataset. The mask size is 64× 16. The restored results on Df are
displayed on the left. The restored results on Dg are displayed on
the right.

Figure 8. The comparison of reconstruction results on the CIFAR10
dataset. The top, middle and bottom columns are the original im-
ages, reconstruction images by Unseen, and reconstruction images
by Ort respectively.

quently results in the failure to fully remove the target class.
As shown in Fig. 6 and the CR value of 0.47, EraseDiff fails
to remove the ’tench’ semantic when ’cyprinoid’ is used as a
pseudo-label. In contrast, MSGM avoids this issue, showing
greater robustness and precision in text-to-image unlearning.

4.5. Application to Downstream Tasks
Unleanring Inpainting. MSGM enables zero-shot transfer
of the SGM MU to downstream tasks. We first test MSGM
on inpainting task. For the class inpainting on CIFAR-10
and STL-10, we mask the upper half of the image and at-
tempt to restore the whole image. For feature inpainting,
we mask the region of the feature to be restored (covering
1/4 of the whole image, shown in Fig. 7). The quantitative
restoring results on Df and Dg are reported in Tab. 6. We
regard the classification as correct if the predicted class of
the restored image matches that of the corresponding origi-
nal image. Obtuse-MSGM still contains a high classification
accuracy for restored images on Dg while significantly de-
crease the accuracy on restored images on Df . This indicates
that restored image by Obtuse-MSGM still retains similar
semantics on Dg , while altering the source semantics on Dg .
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Table 6. The inpainting comparison results, where ‘stand’ refers to the ‘Standard’ method.

Dataset ACC (%) (Dg(↑) and Df (↓)) FID of Dg(↓) CLIP of Dg(↓) PSNR of Dg(↑) SSIM of Dg(↑)

Clean Stand Ort Obt Unseen Stand Ort Obt Unseen Stand Ort Obt Unseen Stand Ort Obt Unseen Stand Ort Obt Unseen

CIFAR-10 Dg 95.4 72.5 75.5 74.7 75.8 13.11 15.96 13.46 13.64 6.80 6.80 6.77 6.72 31.09 31.09 31.01 31.03 0.56 0.55 0.54 0.54Df 95.5 75.0 57.2 49.6 59.7

STL-10 Dg 96.3 83.4 83.6 83.1 84.5 28.48 29.95 28.55 28.56 8.50 8.51 8.50 8.50 31.18 31.17 31.17 31.18 0.59 0.58 0.57 0.59Df 96.3 84.1 59.5 50.3 54.9

CelebA Dg 98.3 95.5 99.0 99.5 98.0 29.42 30.31 29.43 30.42 8.96 8.96 8.97 8.94 34.54 34.52 34.50 34.54 0.83 0.82 0.81 0.82Df 98.3 53.0 1.0 0.5 2.0

Table 7. The comparison results of reconstruction, where ‘stand’ denotes the ‘Standard’ method.

Dataset ACC (%) (Dg(↑) and Df (↓)) FID of Dg(↓) CLIP of Dg(↓) PSNR of Dg(↑) SSIM of Dg(↑)

Clean Stand Ort Obt Unseen Stand Ort Obt Unseen Stand Ort Obt Unseen Stand Ort Obt Unseen Stand Ort Obt Unseen

CIFAR-10 Dg 95.4 88.1 87.7 87.0 87.9 5.52 5.71 5.57 5.94 6.91 6.90 6.89 6.90 31.91 32.15 32.19 31.82 0.92 0.92 0.93 0.91Df 95.5 74.4 48.4 69.6 70.3

Next, for image quality metrics (FID, CLIP, PSNR and
SSIM) on Dg , MSGM matches the standard model, showing
high visual quality. Furthermore, we compare the visual
results on Fig. 7. When the masked image is from Df ,
Unseen by Re-training still has the probability to restore
the ‘bangs’ feature in the masked region, while MSGM
effectively erase the bangs on Df . When the masked image
is from Dg , MSGM can successfully restore realistic masked
features, such as forehead, nose, mouth etc.
Unlearning Reconstruction. Generative models can learn
the latent representations of data and reconstruct images.
Through the reconstruction, we use these latent representa-
tions as guidance to verify whether our method effectively
achieves unlearning. To maintain the similarity between
reconstruction results and original images on Dg, we set
t = 0.02 for the continuous-time SDE schedule. We re-
construct images using VP SDE model trained by standard
training, Unseen by Re-training and MSGM, and report the
comparison results in Tab. 7. We utilize the classification
accuracy to assess whether the reconstructed images still be
classed by the original class. Obtuse-MSGM significantly
decrease the accuracy for reconstructed Df data while main-
taining the original semantic information for reconstructed
Dg . Additionally, we calculate the CLIP distance, PSNR and
SSIM between original images and reconstructed images on
Dg. The images reconstructed by MSGM and the standard
model have nearly the same numerical results, indicating that
the images reconstructed by MSGM have high visual quality.
Next, we visualize the reconstruction results in Fig. 8. Un-
like Unseen by Re-training, where the reconstruction images
on Df have the same semantics with the original images,
Orthogonal-MSGM reconstructs Df as noisy images, indi-
cating that Orthogonal-MSGM has completely unlearned the
Df distribution.

4.6. Ablation Study

Optimization Choices. We explore two strategies for opti-
mizing Eq. (9): (1) Simultaneously Updating: both Lg and
Lf are simultaneously updated in each iterative sampling,

Table 8. Ablation studies on MNIST with Orthogonal-MSGM
using different parameters α. α = 1 means Unseen.

α Class UR(%) (↓) NLL Test α Class UR(%) (↓) NLL Test

0.7
3 0.7 Dg 4.17 0.99

3 0.4 Dg 3.927 1.2
Df

7 0.8
Df3 and 7 1.9 13.32 3 and 7 1.2 14.75

0.9
3 0.5 Dg 4.05 1.0

3 1.8 Dg 3.077 0.9
Df

7 2.3
Df3 and 7 1.4 13.88 3 and 7 4.1 3.01

Figure 9. The visual results of Simultaneously Updating vs. Alter-
native Updating.

and (2) Alternative Updating: Lg is updated in each iterative
sampling, while Lf is updated at intervals of every four it-
erations. We plot the loss curve in supplementary material
and visualize the visual results in Fig. 9. We find that Lg

converges much more easily than Lf . As a result, alternative
updating facilitates better convergence of Lg and improves
visual quality. Thus, we adopt this strategy.
α Setting. MSGM uses two losses in Eq. (9): αLg for
generation quality and (1−α)Lf for unlearning. An ablation
in Tab. 8 shows α = 0.99 best balances both, and is thus
used by default.

5. Conclusion and Future work
In this work, we introduce MSGM, the first unlearning frame-
work for score-based generative models (SGMs). MSGM
outperforms the current “gold standard” and DDPM base-
lines, erasing unwanted content while preserving the quality
of retained data. The plug-and-play design adapts to diverse
diffusion backbones, supports zero-shot transfer to down-
stream tasks, and stays robust under improper guidance.
Future extensions will target additional modalities such as
skeletal time-series and video.
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