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ABSTRACT
Thanks to the rapid development of mobile sensing techniques, mas-
sive human-generated spatial-temporal data (HSTD) are generated
from the urban areas, e.g., passenger-seeking trajectories from taxi
drivers, and public transit trips from urban dwellers. These HSTD
record sequential decisions made by human agents. Studying hu-
man behavior from HSTD provides benefits to many aspects, for ex-
ample, studying passenger-seeking strategies from experienced taxi
drivers can help improve the operation efficiencies of those new dri-
vers. One common method to analyze human behavior from HSTD
is Imitation Learning (IL). Existing IL approaches rely on data col-
lected from experts. However, human agents who generate HSTD
may have diverse expertise levels across geographical regions, i.e.,
with good policies in some regions and poor policies in less experi-
enced regions. The problem of how to infer the optimal policy for
agents in their unfamiliar or less-experienced regions remains open.
In this paper, we propose the novel GenerativeAdversarial Imitation
Learning for Non-experts (NEXT-GAIL) framework to first disen-
tangle expert knowledge, which is irrelevant to spatial-temporal
regions, from the demonstration data. Then, such knowledge can be
transferred to regions, where the agent does not possess an expert
policy. We take the real-world taxi trajectory data as an example to
evaluate the performance of our proposed framework. The compar-
ison results illustrate that our proposed NEXT-GAIL outperforms
existing state-of-the-art approaches regarding the accuracy of the
inferred optimal policy for non-experts.

CCS CONCEPTS
•Computingmethodologies→ Inverse reinforcement learn-
ing.
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1 INTRODUCTION
Massive spatial-temporal data are being generated by human in
the urban environment everyday, for example, the vehicle GPS tra-
jectory data in ride-sharing services (e.g. Lyft [27], Bluegogo [4]
and Spin [37]) and traditional taxi services, and the mobility data
of urban commuters from automatic fare collection systems, etc.
Given these enormous amount of human generated spatial-temporal
data (HSTD), how to extract applicable information from them,
and utilize them to benefit the urban dwellers is of great practical
importance. Among all applications, one aspect of using HSTD is
studying the decision-making behavior of human agents, which
can benefit people in many respects. For instance, studying the be-
havior of expert taxi drivers can potentially improve the operation
efficiency of new drivers, understanding the decision-making be-
havior of urban commuters can assist the road network and public
transit infrastructure design and resource allocation for the urban
planners, etc.

To study the decision-making behaviors of human agents, peo-
ple usually model human decision-making processes as Markov
Decision Processes (MDPs) [24, 26, 31, 33, 35, 43, 46, 48, 51], where
human decision-making behaviors are captured by sequences of
human decisions. Each human agent aims to maximize the accu-
mulated “rewards” when making decisions, where in practice, the
“rewards” are usually unknown and intractable [13, 52, 53].
State-of-the-art approaches. To study how human make deci-
sions when “reward” is unknown, Imitation Learning (IL) servers
as a promising technique to recover human decision-making strate-
gies from the observed data, e.g., HSTD. For example, Pan et al.
employed Explainable Generative Adversarial Imitation Learning
(xGAIL) to recover the optimal policy of the expert taxi drivers from
the observed data, and interpret the model to understand how and
why taxi drivers make decisions [32]. Zhang et al. extended Genera-
tive Adversarial Imitation Learning (GAIL) [15] to conditional GAIL
(cGAIL) and unveiled multiple taxi drivers’ policies by transferring
knowledge across taxi drivers and locations [48]. Li et al. proposed
InfoGAIL to imitate experts’ behaviors while identifying salient
latent factors of variation in the demonstrations [25]. In [31, 33],
the authors apply Relative Entropy Inverse Reinforcement Learning
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(a) Visitation frequency heat map. (b) Earning efficiency heat map.

Figure 1: Visitation frequency & earning efficiency heat maps of a taxi driver in Shenzhen, China. Darker colormeans a higher
value.

[5] to recover the linear reward function of the expert taxi drivers
and analyze their decision preference dynamics over time. All of
these IL approaches builds upon the assumption that demonstrations
to learn from are obtained from expert agents.
Motivation.However, in real-world applications, it is hard to guar-
antee that the collected data are all from experts. Taking the taxi
drivers as an example as is shown in Figure 1, a driver may be more
familiar with some particular regions of the city (i.e., regions with
darker red color in Figure 1a) and therefore has a better perfor-
mance (e.g., higher earning efficiency) in these regions (e.g., due
to frequent visits) as is shown in Figure 1b. For these regions, the
driver can be viewed as an expert. However, he/she may not have
enough experiences in other regions of the city, where the driver
is considered as a non-expert. Similar observations are made in
other taxi drivers. As a result, none of existing IL works can provide
the optimal policy from the non-expert data neither from HSTD.
Therefore, we are motivated to extract expert knowledge from non-
expert demonstrations, design an IL algorithm that makes use of
them and infer human agents’ decision strategies from them.
Our NEXT-GAIL. In this paper, we make the first attempt to use
non-expert demonstrations, i.e., HSTD, to infer expert decision
making strategies by proposing NEXT-GAIL, a novel Generative
Adversarial Imitation Learning for Non-experts model. First, NEXT-
GAIL “cleans up” the data from non-experts, to extract the portion
of data that presents the agent’s expert knowledge. Then, NEXT-
GAIL learns the expert knowledge representation (irrelevant to the
spatial-temporal context) by conducting feature disentanglement.
Using the extracted expert knowledge, NEXT-GAIL can infer the
optimal policy for spatial-temporal regions, where the agent does
not possess an optimal policy. Overall, the proposed NEXT-GAIL
provides a complete solution to infer the optimal policy for non-
experts, which mainly consists of three components: 1) Expertise
Recognition, 2) Expert Knowledge Disentangled Imitation Learn-
ing, and 3) Optimal Policy Inference for Non-experts. We use the
real-world taxi drivers’ passenger-seeking data as an example to
demonstrate the performance of our proposed NEXT-GAIL. Our
main contributions are summarized as follows:

• We propose an Expert Knowledge Disentangled Generative Ad-
versarial Imitation Learning framework to disentangle the expert

knowledge from expert data. The expert knowledge disentangled
is irrelevant to the spatial-temporal information of the famil-
iar states, so that it can be utilized and transferred to infer the
optimal policy in the non-expert or unfamiliar regions.

• We propose an inference mechanism to infer the optimal policy
for the non-experts utilizing the expert knowledge learned from
the expert data. The inferred policy can guide the human agent
to improve his/her strategies directly.

• We employ real-world taxi trajectory data to evaluate the per-
formance of our proposed NEXT-GAIL. The comparison results
illustrate that NEXT-GAIL outperforms the state-of-the-art base-
line approaches in inferring the optimal policy for non-experts.
We make our code and unique data set available to contribute to
the research community in a Dropbox link 1.
The remainder of the paper is organized as follows. In Section

Overview, we introduce the preliminaries and formally define our
problem and outline our solution framework. Section Phase 1: Data
Preprocessing presents our approach for data preprocessing. We
elaborate expert knowledge disentangled GAIL in Section Phase 2:
Expert Knowledge Disentangled Imitation Learning. Section Phase 3:
Inferring Optimal Policy for Non-experts introduces the inference
framework to learn the optimal policy for the non-experts, and
Section Evaluation evaluates our framework with real-world data.
We differentiate our solution with other approaches and introduce
relevant works in Section Related Work and concludes the paper in
Section Conclusion.

2 OVERVIEW
In this section, we introduce the preliminaries, formally define the
non-expert strategy learning problem, and highlight the research
challenges. For brevity, we present a table of notations in Table 1.

2.1 Preliminaries
Markov Decision Processes (MDPs).Markov decision processes
(MDPs) [38] provides a mathematical framework to model decision-
making processes, where a decision maker (a.k.a. an agent) in-
teracts with an environment in a sequential process. An MDP is

1The code is available at https://www.dropbox.com/sh/xjwankbnoz5qo81/
AAACjXK8g62rtCK4K-vC7IBUa?dl=0

https://www.dropbox.com/sh/xjwankbnoz5qo81/AAACjXK8g62rtCK4K-vC7IBUa?dl=0
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Table 1: Notations.

Notations Descriptions
S = {𝑠} State space.
A = {𝑎} Action space.
T𝐸 = {𝜏𝐸 } Expert trajectory set.
T𝑁𝐸 = {𝜏𝑁𝐸 } Non-expert trajectory set.
T = {𝜏𝐸 , 𝜏𝑁𝐸 } Expert and non-expert mixed trajectory set.
𝜋 (𝑎 |𝑠) Policy function.
𝑅(𝑠, 𝑎) Reward function.
𝜋𝐸 (𝑎 |𝑠) Empirical policy from expert trajectory data.
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) Transition probability.
𝛾 The discount factor.
𝜂 Initial state distribution.
f𝑠 = [𝑓1, 𝑓2, 𝑓3, 𝑓4] State feature tensor.
𝑔, 𝑡 Grid & time identifiers.
𝑣𝑔𝑡 Grid & time related hidden code.
𝑣𝑘 Grid & time irrelevant hidden code.

represented as a 5-tuple ⟨S,A,𝑇 , 𝑅,𝛾⟩, where S defines the state
space, A the action space, 𝑇 : S × A × S ↦→ [0, 1] character-
izes the probability 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) of transiting to state 𝑠𝑡+1 from
𝑠𝑡 after taking action 𝑎𝑡 , 𝑅 : S × A ↦→ R is the reward func-
tion of each state-action pair, and 𝛾 ∈ (0, 1] is the discount factor.
At a state 𝑠 ∈ S, an agent makes a decision and takes an action
𝑎 ∈ A following his/her strategy, i.e., a memoryless stochastic
policy 𝜋 . The memoryless stochastic policy 𝜋 defines a mapping
from the state space S to the probability over action set A as
𝜋 : S ×A ↦→ [0, 1]. It specifies a probability distribution on the ac-
tion to be executed at each state. A decision-making process forms
a trajectory 𝜏 = ((𝑠0, 𝑎0), · · · , (𝑠𝐿, 𝑎𝐿)), where 𝐿 is the terminal
time step, and the set of all trajectories is denoted as T = {𝜏}. We
denote 𝜏𝐸 as expert trajectory and T𝐸 as expert demonstrations,
and 𝜏𝑁𝐸 and T𝑁𝐸 for non-experts’. We denote the expectation with
respect to a policy 𝜋 to represent an expectation with respect to
the trajectories it generates, i.e., E𝜋 [ℎ(𝑠, 𝑎)] = E[

∑𝐿
𝑡=0 𝛾

𝑡ℎ(𝑠𝑡 , 𝑎𝑡 )],
where 𝑠0 ∼ 𝜂, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡 ∼ 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) and ℎ is a func-
tion of interest. Each agent aims to maximize its expected reward
E𝜋 [𝑟 (𝑠, 𝑎 |ℎ)].
Imitation Learning (IL). Given a large amount of trajectory data
from an expert human agent (e.g., an experienced taxi driver), T𝐸 ,
IL aims at learning a policy function 𝜋 (𝑎 |𝑠) to finish a task. There
are mainly two paradigms of IL, namely, the inverse reinforcement
learning (IRL) [5, 29, 52, 53], and apprenticeship learning (AP) [1,
10, 15].

IRL aims at inversely learning a reward function 𝑅(𝑠, 𝑎) and
recovering expert policy 𝜋 (𝑎 |𝑠) from 𝑅(𝑠, 𝑎) based on various prin-
ciples, e.g., maximum entropy principle [53], maximum causal en-
tropy principle [52], and relative entropy principle [5]. They all
assume a reward function as a linear combination of the features
associated with state-action pairs. For example, maximum causal
entropy IRL tries to solve the following constrained optimization
problem to uncover expert strategy, namely, looking for a policy 𝜋
with maximal causal entropy (Eq. (1)), and searching for the reward
function 𝑅 such that the expected reward of a trajectory generated
under 𝜋 matches that under the empirical policy 𝜋𝐸 from observed
data (i.e., enforcing Eq. (2)) when 𝜋 (𝑎 |𝑠) expresses a probability

distribution in Eq. (3),

max
𝑅

min
𝜋

: − 𝐻 (𝜋), (1)

s.t. : E𝜋 [𝑅(𝑠, 𝑎)] = E𝜋𝐸 [𝑅(𝑠, 𝑎)], (2)∑
𝑎∈𝐴

𝜋 (𝑎 |𝑠) = 1,∀𝑠 ∈ S. (3)

Here𝐻 (𝜋) = E𝜋 [
∑𝐿
𝑡=0 𝛾

𝑡 (− log𝜋 (𝑎𝑡 |𝑠𝑡 ))] is the𝛾-discounted causal
entropy of 𝜋 measuring the uncertainty present in a causally con-
ditioned policy distribution 𝜋 (𝑎 |𝑠), 𝜋 represents a learner policy,
and 𝜋𝐸 (empirical policy) represents the policy observed from the
collected expert data.

AP [1, 10, 15], on the other hand, learns expert policy 𝜋 (𝑎 |𝑠)
directly from expert demonstrations and extends IRL solutions
via modeling expert policy 𝜋 and reward signal 𝑅 using neural
networks. A state-of-the-art AP approach is Generative adversarial
imitation learning (GAIL) [15]. GAIL [15] shows that the above
constrained optimization strategy learning problem in Eq. (1-3)
is equivalent to solving a min-max problem with the objective of
minimizing the Jensen-Shannon (JS) divergence 𝐷 𝐽 𝑆 between the
trajectory distribution induced by policy 𝜋 and empirical policy 𝜋𝐸 ,
i.e.,

min
𝜋 ∈Π

−𝜆𝐻 (𝜋) + 𝐷 𝐽 𝑆 (𝜋, 𝜋𝐸 ),with

𝐷 𝐽 𝑆 (𝜋, 𝜋𝐸 ) =max
𝑅
E𝜋 [log(𝑅(𝑠, 𝑎))] + E𝜋𝐸 [log(1 − 𝑅(𝑠, 𝑎))],

with Π as the policy probability simplex space, guaranteeing con-
straint Eq. (3), and 𝜆 as the Lagrangian multiplayer. As a result,
GAIL inversely learns both the policy function 𝜋 (𝑎 |𝑠) and a reward
signal 𝑅(𝑠, 𝑎) employed by the expert agent from the his/her trajec-
tories using a Generative Adversarial Net (GAN) [13] structure. It
solves the strategy learning problem with a generator network 𝐺
(representing the policy function 𝜋 ) and a discriminator network 𝐷
(representing the reward function 𝑅). However, both IRL approaches
and GAIL requires the demonstrations (i.e., trajectories) to be gen-
erated from expert agents [15, 53], thus non-expert demonstrations
fail to be applied under such a framework. To learn from non-expert
demonstrations, we model the human decision making process as
MDPs and formulate our problem in the following sections.

2.2 Human Decision Making as Markov
Decision Processes

Human-generated spatial-temporal data (HSTD) record human mo-
bility trajectories which embed sequential human decisions. For
example, taxi drivers’ sequential decisions when seeking for a pas-
senger are recorded in taxi GPS traces; urban commuters’ sequential
decisions when deciding on transit modes are inferred from auto-
mated fare collection devices on public transportation. Therefore,
HSTD contains human sequential decision making trajectories as
sequences of human agent traversed spatial-temporal states fol-
lowing his/her decision strategy. HSTD is mixed with both expert
trajectories and non-expert trajectories. In this sense, we formulate
human decision making from HSTD as MDPs, and formally define
their state and action spaces as below:
• State 𝑠 ∈ S: A state 𝑠 from HSTD can be uniquely defined by the
geographical location (e.g. latitude and longitude) and temporal
information (e.g. time stamp). It also relates to a set of decision
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Figure 2: MDP of taxi driver’s decision making process Figure 3: NEXT-GAIL Solution Framework.

making related features, e.g., traffic speed and passenger flow of
surrounding regions. These features reflects what a humen agent
would consider when making decisions.

• Action 𝑎 ∈ A: An action 𝑎 fromHSTD represents a decision made
by a human agent at a spatial-temporal state 𝑠 when performing a
task. An action 𝑎made at state 𝑠 will affect the next state transited
to. For example, a passenger near a bus station A (as a state) takes
a bus (as an action) and is transferred to a next bus station B (a
next state).

An illustration example. In taxi drivers’ passenger-seeking pro-
cesses shown in Figure 2, a taxi driver (when the taxi is empty)
is the agent, he/she makes a sequence of decisions about which
directions (as actions 𝑎𝑖 ’s) to go based on his/her own decision-
making strategy at different spatial-temporal states 𝑠𝑖 ’s. Below, we
will simply use state for spatial-temporal state for brevity.

When at different geographical locations, each human agent has
her own decision strategies to follow to choose an action for com-
pleting a task. The human decision-making strategy are modeled
and characterized by the policy function and the reward function
defined below:

• Reward𝑅(𝑠, 𝑎): The reward function𝑅(𝑠, 𝑎) reflects the “reward” a
human agent obtains when taking action 𝑎 at state 𝑠 . It quantifies
how satisfied a human agent is towards his/her situation and
response.

• Policy 𝜋 (𝑎 |𝑠): A policy function 𝜋 (𝑎 |𝑠) of a human agent is a
mapping from a state 𝑠 to probabilities over actions 𝑎 ∈ A, i.e.,
the probability distribution of choosing an action 𝑎 given a state
𝑠 . It governs what decisions a human agent to take at different
situations.

As a result, a human agent’s (e.g., taxi driver’s) decision-making
strategy can be characterized by i) the policy function 𝜋 (𝑎 |𝑠) con-
trolling how the agent chooses an action, and ii) the reward function
𝑅(𝑠, 𝑎) governing how the agent evaluates states and actions.

2.3 Non-Expert (NEXT) Strategy Learning
Problem, Challenges & Solution
Framework

Problem Definition. Given mixed demonstrations from both ex-
perts and non-experts, i.e., T = {𝜏𝐸 , 𝜏𝑁𝐸 }, we aim to distinguish T𝐸
and T𝑁𝐸 from T , disentangle expert knowledge from T𝐸 , extract

state-related information from T𝑁𝐸 , and infer the optimal decision-
making strategy, namely, the policy 𝜋 (𝑎 |𝑠) for the non-experts.
Challenges. The proposed NEXT strategy learning problem is
challenging in three aspects: (C1) How to quantify the expertise
of a human agent at different spatial regions? (C2) How to disen-
tangle expert knowledge from mixed demonstrations in HSTD (as
observed in Figure 1)? (C3) Given disentangled expert knowledge,
how to design an IL algorithm such that expert knowledge can be
transferred and utilized to learn optimal strategies for non-experts?
Solution Framework. To respond to the above challenges and
solve the NEXT strategy learning problem, we propose the novel
framework of Generative Adversarial Imitation Learning for Non-
experts (in short, NEXT-GAIL). Figure 3 illustrates the solution
framework. Note that, in this paper, we use the taxi drivers’ passenger-
seeking problem as an example and application to evaluate our pro-
posed NEXT-GAIL. In the framework, NEXT-GAIL consumes two
sources of data and consists of three phases: (1) Data Preprocessing
to tackle C1, (2) Expert Knowledge Disentangled Imitation Learn-
ing to tackle C2, and (3) Inferring optimal policy for non-experts
to tackle C3.

3 PHASE 1: DATA PREPROCESSING
In this section, we tackle C1 via demonstrating the data preprocess-
ing procedure with the taxi driver passenger-seeking process as an
example, and introducing the expertise recognition mechanism.

3.1 Data Description
We use two data sources for the analysis of taxi driver passenger-
seeking process and treat them as input, including (1) taxi trajectory
data and (2) road map data. Both datasets are collected in Shenzhen,
China in 2014 and 2016 for consistency.
Taxi trajectory datawere collected from taxis equipped with GPS
devices in Shenzhen, China during 2014 and 2016. It contains GPS
records from a total of 17, 877 taxis, each of which generates a
GPS point every 40 seconds on average. Overall, 51,485,760 GPS
records were collected on a daily basis, and each GPS record carries
five key attributes, including a unique taxi plate ID, time stamp,
passenger indicator, latitude and longitude. The passenger indicator
bears a binary value with 1 indicating a passenger on board, and 0
otherwise.
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(a) Shenzhen road map (b) Map gridding

Figure 4: Shenzhen map data

ShenzhenRoadmapdatawere collected fromOpenStreetMap [30].
It covers the area defined in between 22.44◦ to 22.87◦ in latitude and
113.75◦ to 114.63◦ in longitude. It contains information of 21,000
roads categorized in six levels, namely, motorway, trunk road, pri-
mary road, secondary road, tertiary road and unclassified road, as
demonstrated in Figure 4a.

3.2 Map and Time Quantization
For better characterization of human agents’ (i.e., taxi drivers’) activ-
ities and ease of decision strategy analysis, we define the spatial and
temporal spaces a taxi driver traverses by i) dividing and partition-
ing Shenzhen city into equal side-length (spatial) grid cells with a
fixed side-length 𝑙 = 0.01◦ in latitude and longitude, ii) discretizing
a day into 288 five-minute (temporal) intervals. There are a total of
1, 934 cells (eliminating inaccessible cells in the ocean and unreach-
able regions) connected among each other by the road network, as
shown in Figure 4b. We thus represent each cell as ℓ = (𝑥,𝑦), where
𝑥 and 𝑦 are longitudinal and latitudinal cell indexes, respectively.
A spatial-temporal state 𝑠 is then uniquely defined by a spatial gird
cell ℓ , a time interval 𝑡 , and the day of the week 𝑑 , i.e., 𝑠 = (𝑥,𝑦, 𝑡, 𝑑).

3.3 Feature Extraction
Taxi drivers’ decisions (e.g., which direction to go) are affected
by various features (such as traffic speed, congestion condition
and so on) observed in the surrounding urban environment of the
target area. These features are referred to as taxi drivers’ state
observations. We model a taxi driver’s observations at a spatial-
temporal state 𝑠 as the state feature denoted as f𝑠 = [𝑓1, 𝑓2, 𝑓3, 𝑓4]. It
is a tensor including four statistic matrices for the surrounding 5×5
grid cells of 𝑠 . Specifically, each statistic matrix 𝑓𝑖 with 𝑖 = 1, · · · , 4
is a feature map of surrounding 5× 5 grids centering 𝑠 in one aspect
of feature, where 𝑓1 is the number of pickups matrix, 𝑓2 is the traffic
volume matrix, 𝑓3 is the traffic speed matrix, and 𝑓4 is the waiting
time matrix.

3.4 Expertise Recognition
It is hard to guarantee that the demonstrations collected from hu-
man agents are always expert. Taking the taxi drivers as an example,
each driver can be expert in the regions where he/she is particularly
familiar with, whereas in some other regions, his/her “performance”
may not be superior. Here in this paper, we quantify the perfor-
mance of taxi drivers in each grid by their Earning Efficiency (EE),
i.e., hourly earnings, inside each grid2. Then, we recognize and
distinguish the expertise of each grid for each taxi driver to the
following categories:
2There are other ways of defining human agents’ expertise level, we follow [31, 48, 49]
and choose to use taxi drivers’ earning efficiencies.

(a) Driver 1.

(b) Driver 2.

Figure 5: Earning efficiency trends of expert and non-expert
grids.

• Expert grids: the earning efficiency of the driver inside these
grids remains similar from July to December. This is selection
is based on the observation in [31] where expert agents tend to
have consistent strategies and remain similar earning efficiencies
over time.

• Non-expert grids: the earning efficiency of the driver inside
these grids increases from July to October, and remains stable
from October to December. We consider these grids non-expert
from July to September, and they become expert after October.
The criterion of defining non-expert grids is that we can use the
data in these grids after October as the ground truth to evaluate
our proposed NEXT-GAIL.
As a result, demonstrations traversing expert grids are viewed

expert demonstrations T𝐸 where we extract expert knowledge
from, and those traversing non-expert grids are viewed non-expert
demonstrations T𝑁𝐸 where we elicit state-related information from.
Note that we do not consider grids in the data whose earning ef-
ficiency fluctuates over time and shows no sign of high expertise.
This naturally stems from the fact that these drivers tend to be
constantly learning to locate a passenger and have not reached
expert level where no ground truth data can be obtained to test
against and evaluate from. Figure 5 shows the trends of the average
earning efficiencies in the expert grids and non-expert grids of two
drivers.

4 PHASE 2: EXPERT KNOWLEDGE
DISENTANGLED IMITATION LEARNING

In this section, we tackle C2 and introduce the design of our pro-
posed NEXT-GAIL model in learning the expert behavior with
knowledge disentanglement.
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Figure 6: NEXT-GAIL training framework.

Algorithm 1 NEXT-GAIL Training Process
Input: Taxi drivers’ decision-making data as state-action

pairs T𝐸 = {(f𝑠 (𝑠), 𝑎)} in expert grids, and in all grids
T ; initialize policy net, reward net, classifier parameters
𝜃 = {𝜃𝑒 , 𝜃𝑑 } 𝜔 , and 𝜙 ; batch size 𝐵.

Output: Learned policy 𝜋𝜃 , reward 𝑅𝜔 and classifier𝐶𝑙𝑠𝜙 .
1: for Each Epoch 𝑖 = 0, 1, · · · do
2: Generate trajectories T̃ 𝑖 from 𝜋𝜃𝑖 .
3: Sample state-action sequences from T𝐸 and T̃ 𝑖 each

with batch size 𝐵 to evaluate Eq.(4).
4: Update 𝜃𝑖 = {𝜃𝑖𝑒 , 𝜃𝑖𝑑 } to minimize 1 in Eq.(4).
5: Update 𝜔𝑖 to maximize 1 in Eq.(4).
6: Update 𝜙𝑖 to minimize 2 in Eq.(4).
7: end for

NEXT-GAIL algorithm.We employ Generative Adversarial Im-
itation Learning (GAIL)[15] framework to learn the optimal pol-
icy from the expert data, i.e., data collected from the expert re-
gions(/grids) T𝐸 . The generator of GAIL is the policy net 𝜋𝜃 pa-
rameterized by 𝜃 , which consumes the observations of a state, i.e.,
state feature maps f𝑠 and outputs the policy. The discriminator is
the reward net 𝑅𝜔 parameterized by 𝜔 , which takes both the state
feature f𝑠 of state 𝑠 , and the sampled action 𝑎 as input, and outputs
the reward signal which indicates to what degree the generated
state-action pair matches the demonstrated expert behavior.

Meanwhile, in the policy net 𝜋𝜃 , we aim to disentangle the
knowledge of the driver into two parts, i.e., the knowledge related
to the specific regions(/grids) and time slots, and the knowledge
irrelevant to the location and time, which is considered as the
high-level knowledge of the driver and can be transferred to other
locations and time slots. To accomplish this goal of knowledge
disentanglement, we design the policy net as an auto-encoder-
decoder, i.e., 𝜋𝜃 (𝑠) : 𝐷𝑒𝜃𝑑 (𝐸𝑛𝜃𝑒 (𝑠)) with 𝜃 = {𝜃𝑒 , 𝜃𝑑 }. The frame-
work is illustrated in Figure 6. To enforce expert knowledge and
spatial-temporal information disentanglement, we design a spatial-
temporal classifier denoted as 𝐶𝑙𝑠𝜙 parameterized by 𝜙 to classify
the location and time information from the hidden latent codes
𝑣𝑔𝑡 (related to grid and time) and 𝑣𝑘 (irrelevant to grid and time).
The encoder 𝐸𝑛𝜃𝑒 is trained to produce 𝑣𝑘 as adversarial inputs to
the classifier 𝐶𝑙𝑠𝜙 containing little spatial-temporal information,
and produce 𝑣𝑔𝑡 as positive samples to promote the performance of
the classifier 𝐶𝑙𝑠𝜙 to make correct prediction on spatial-temporal
information 𝑔 and 𝑡 as is shown in Figure 6. Therefore, the objective
function of NEXT-GAIL is

min
𝜋𝜃 ,𝐶𝑙𝑠𝜙

−𝜆𝐻 (𝜋𝜃 (𝑠)) + 𝐷 𝐽 𝑆 (𝜋𝜃 , 𝜋𝐸 )︸                             ︷︷                             ︸
1

(4)

+ E𝜋𝐸
[
log 𝑃𝐶𝑙𝑠𝜙 (𝑔, 𝑡 |𝑣𝑘 , 𝐸𝑛𝜃𝑒 (𝑠)) − log 𝑃𝐶𝑙𝑠𝜙 (𝑔, 𝑡 |𝑣𝑔𝑡 , 𝐸𝑛𝜃𝑒 (𝑠))︸                                                                            ︷︷                                                                            ︸

2

]
,

where 𝐷 𝐽 𝑆 (𝜋𝜃 , 𝜋𝐸 ) = max𝑅𝜔 E𝜋𝜃 [log(𝑅𝜔 (𝑠, 𝑎))] + E𝜋𝐸 [log(1 −
𝑅𝜔 (𝑠, 𝑎))]. Here, 1 in Eq. (4) is the same as the original GAIL, and 2

is designed to train the encoder to produce 𝑣𝑘 to fool the classifier,
and produce 𝑣𝑔𝑡 to improve the performance of the classifier.

Now we are in a position to present our NEXT-GAIL training
algorithm as is shown in Alg. 1. NEXT-GAIL applies the Adam
[18] optimizer for gradient update on 𝜃, 𝜔 and 𝜙 , and utilizes the
Trusted Region Policy Optimization (TRPO) [36] for updating 𝜃 to
decrease eq. (4) with respect to 𝜋𝜃 . In each training epoch 𝑖 , we use
current policy 𝜋𝜃𝑖 generate learner policy trajectories denoted as
T̃ 𝑖 (line 2). With T̃ 𝑖 and given demonstration in expert grids T𝐸 ,
we sample the state-action sequences from them each with a batch
size of 𝐵, and evaluate the objective in Eq. 4 (line 3). We then update
the policy net 𝜋𝜃𝑖 with a TRPO step whose reward is 𝑅𝜔𝑖 (line 4),
and update the reward net 𝑅𝜔𝑖 and the classifier 𝐶𝑙𝑠𝜙𝑖 sequentially
with the Adam optimizer.
Interpretation of 𝐶𝑙𝑠𝜙 . In fact, the classifier 𝐶𝑙𝑠𝜙 with input 𝑣𝑔𝑡
can maximize the mutual information between 𝑣𝑔𝑡 and the intrinsic
location and time information of the input state, which encourages
the encoder to push the information related to location and time
to 𝑣𝑔𝑡 . Similarly, the classifier 𝐶𝑙𝑠𝜙 with input 𝑣𝑘 can minimize
the mutual information between 𝑣𝑘 and the intrinsic location and
time information, which makes the encoder dispel the informa-
tion about location and time out from 𝑣𝑘 . Below, we will take the
classifier 𝐶𝑙𝑠𝜙 with input 𝑣𝑔𝑡 as an example to show the connec-
tion between the classifier objective and the mutual information
maximization/minimization.

Mutual information between 𝑋 and 𝑌 , 𝐼 (𝑋 ;𝑌 ), measures the
“amount of information” learned from a random variable 𝑌 after
observing the other random variable 𝑋 [6]. Here, we study the
mutual information between the intrinsic location and time infor-
mation 𝑔, 𝑡 and the output vector 𝑣𝑔𝑡 of the encoder 𝐸𝑛(𝑠 |𝑔𝑡), i.e.,
𝐼 (𝑔𝑡 ;𝐸𝑛(𝑠 |𝑔𝑡)). Using Variational Information Maximization [3],
the mutual information 𝐼 (𝑔𝑡 ;𝐸𝑛(𝑠 |𝑔𝑡)) is lower bounded by

𝐼 (𝑔𝑡 ;𝐸𝑛(𝑠 |𝑔𝑡)) ≥ E𝑥∼𝐸𝑛 (𝑠 |𝑔𝑡 ) [E𝑔′𝑡 ′∼𝑃 (𝑔𝑡 |𝑥) [log𝑄 (𝑔′𝑡 ′ |𝑥)]] + 𝐻 (𝑔𝑡)

Then, according to Lemma 5.1 in [6], the above lower bound can
be rewritten as below:

𝐿𝐼 (𝐸𝑛,𝑄) = E𝑥∼𝐸𝑛 (𝑠 |𝑔𝑡 ) [E𝑔′𝑡 ′∼𝑃 (𝑔𝑡 |𝑥) [log𝑄 (𝑔′𝑡 ′ |𝑥)]] + 𝐻 (𝑔𝑡) .
(5)

Now, instead of maximizing 𝐼 (𝑔𝑡 ;𝐸𝑛(𝑠 |𝑔𝑡)) directly, we maximize
the lower bound 𝐿𝐼 (𝐸𝑛,𝑄). Note that in Eq.(5), maximizing𝑄 (𝑔𝑡 |𝑥)
leads to the maximum of the lower bound. Here in our proposed
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Figure 7: NEXT-GAIL inferring framework.

framework, we employ a classifier to maximize the probability of
𝑔, 𝑡 given 𝑥 , i.e., 𝑣𝑔𝑡 .

5 PHASE 3: INFERRING OPTIMAL POLICY
FOR NON-EXPERTS

After we obtain the well-trained NEXT-GAIL model from the expert
data, we want to transfer the expert knowledge 𝑣𝑘 in the expert
grid to the target state at a non-expert grid and tackle C3.

As shown in Figure 7, we want to infer the optimal policy for
state 𝑠𝑛𝑒 which is from the non-expert region or time slot, while
𝑠𝑒 is the expert state from expert grid and time slot. This expert
state 𝑠𝑒 can be determined by selecting the expert state from the
observed data whose feature map f𝑒𝑠 has the minimum 𝐿2 distance
to the target non-expert state f𝑛𝑒𝑠 . Then, we utilize the encoder
obtained in Phase 2 to disentangle the knowledge into 𝑣𝑘 and 𝑣𝑔𝑡
for 𝑠𝑒 and 𝑠𝑛𝑒 as illustrated below

{𝑣𝑒
𝑘
, 𝑣𝑒𝑔𝑡 } = 𝐸𝑛𝜃𝑒 (f

𝑒
𝑠 ), {𝑣𝑛𝑒𝑘 , 𝑣𝑛𝑒𝑔𝑡 } = 𝐸𝑛𝜃𝑒 (f

𝑛𝑒
𝑠 ) .

Then we concatenate the 𝑣𝑒
𝑘
of the expert state and the 𝑣𝑛𝑒𝑔𝑡 of the

non-expert state, and feed it to the decoder to obtain the optimal
policy of the non-expert state, i.e., 𝜋𝜃 (𝑠𝑛𝑒 ) = 𝐷𝑒𝜃𝑑 (𝑣

𝑒
𝑘
, 𝑣𝑛𝑒𝑔𝑡 ) . This

fulfills non-expert policy inference.

6 EVALUATION
In this section, we evaluate the performance of our proposed NEXT-
GAIL using the real-world taxi trajectory data collected in Shenzhen,
China from July to October 2016. We compare our proposed frame-
workwith state-of-the-art baselinemodels, and analyze the learning
curve of NEXT-GAIL to illustrate the effectiveness of knowledge
disentanglement. We make our code and unique data set available
to contribute to the research community in the supplementary
material of this paper.

6.1 Evaluation Plan
We conduct two sets of experiments utilizing the real-world taxi
trajectory data.

• Baseline methods comparison: We compare the accuracy of the
inferred policy for the non-experts by our proposed NEXT-GAIL
with the state-of-the-art baselinemethods GAIL[15] and cGAIL[48].

• Expert knowledge disentanglement analysis:We analyze the learn-
ing curve of our proposed NEXT-GAIL, and illustrate the effec-
tiveness of the expert knowledge disentanglement.

6.2 Evaluation Metrics
Ground truth optimal policy for non-experts.Weanalyze each
driver’s expertise for each grid via a data-driven approach. Specif-
ically, in the expert grids, an expert driver’s earning efficiency
remains stable and ranks at the top 15% among all taxi drivers
from July to December. The non-expert grids for a driver in July
are those in which the driver’s earning efficiencies increase from
July to October, and remains stable at the top 15% from October to
December among all drivers. In experiment, we study grids that are
non-expert in July, and turns expert after October for a driver. We
use the data from each driver in their July’s expert grids to train
our proposed NEXT-GAIL and all the baseline models, and the data
in the non-expert grids in July to test the performance of optimal
policy inference for the non-experts. Data collected in October in
the same grids as the July’s non-expert grids are used to extract
the ground-truth optimal policy for non-experts. The ground-truth
optimal policy for non-experts are empirically calculated for each
grid, i.e., calculating the percentage of choosing each action in each
grid via data-driven approach.
Metrics. In order to measure the accuracy of the inferred policy
compared with the empirical ground-truth optimal policy, we em-
ploy the Kullback-Leibler (KL) divergence and 𝐿2-distance metrics.
KL divergence [22] measures how one distribution 𝑃 is different
from a ground truth distribution 𝑄 as

𝐷𝐾𝐿 (𝑃 | |𝑄) = −
∑
𝑥 ∈X

𝑃 (𝑥) ln 𝑄 (𝑥)
𝑃 (𝑥) .

𝐿2-distance [2] is also called the Euclidean distance, which views
two n-dimensional policies as two points in n-dimensional space
and measures the ordinary distance from the ground truth policy
𝑄 = (𝑞1, · · · , 𝑞𝑛)to the learned policy 𝑃 = (𝑝1, · · · , 𝑝𝑛), i.e.,

𝐿2 (𝑃,𝑄) =

√√
𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖 )2 .

Smaller KL divergence and 𝐿2-distance indicate higher accuracy in
inferring the optimal policy for the non-experts.

6.3 Experiment Setups
We use the data in the expert grids in July to train all models
and test the inference performance on the non-expert grids. All
experiments were run on Red Hat Enterprise Linux 7.2 and written
in Python 3.7.3. The implementation of neural networks is based
on PyTorch 1.0.13. We also employ Numpy 1.16.4 and Scipy 1.3.0 in
the implementation.
NEXT-GAIL implementation. The implementation details of
NEXT-GAIL are as follows:
• The encoder network. The encoder net consists of 2 convolu-
tional layers and 1 fully-connected layer. Between the 2 convo-
lutional layers, there is a max pooling layer with a filter size of
2 × 1. The number of filters in the 2 convolutional layers is 3 and

3https://pytorch.org/get-started/previous-versions/

https://pytorch.org/get-started/previous-versions/
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6, respectively. We use a kernel size of 2× 2 for the convolutional
layers. The output dimension of the fully-connected layer is 24.

• The decoder network. The input of the decoder network is the
combination of hidden vectors 𝑣𝑘 and 𝑣𝑔𝑡 of size 24 in total. The
decoder network consists of 3 fully-connected layers with output
dimensions of 48, 84, and 10, respectively. There is a softmax layer
after the 3 fully-connected layers, which outputs the policy for
the input state of the encoder. Together the encoder and decoder
form the generator, i.e., policy net, in the NEXT-GAIL framework.

• The classifier network. The Spatial-temporal classifier (in short,
ST-classifier) and the adversarial ST-classifier share the same
network, i.e., the structure and parameters are shared. There
are 2 fully-connected layers in the classifier net. The output
dimension of the first fully-connected layer is 48, and that of
the second fully-connected layer equals to the number of valid
spatial-temporal regions. A softmax layer is added in the end
to output the possibility of classifying to the spatial-temporal
regions.

• The discriminator network. In the discriminator network, the in-
put is an input state of size 4 × 5 × 5 and an action, before the
covolutional layers, we use a fully-connected layer to map the
input to the dimension of 1 × 9 × 9, followed by 2 convolutional
layers and 3 fully-connected layers. The filter size of the 2 con-
volutional layers is 2 × 2, and the numbers of filters are 2 and
6, respectively. The output dimensions of the 3 fully-connected
layers are 120, 84, 1.

During the training process, we apply batch gradient descent
approach to update the generator network and discriminator net-
work, with a predefined 1, 000 epochs. We employ ADAM[18] with
a learning rate of 2𝑒−3 to update the parameters in the encoder,
decoder, classifier, and the discriminator networks.
Baselines. We compare our proposed NEXT-GAIL with two state-
of-the-art imitation learning approaches, i.e., Generative Adver-
sarial Imitation learning (GAIL) [15] and Conditional Generative
Adversarial Imitation Learning (cGAIL) [48]. The detailed settings
are as following:

• GAIL [15]. The generator is a covolutional neural network con-
suming the state feature map f𝑠 and producing the policy, and the
discriminator network (i.e., reward) takes both the state feature
map f𝑠 of state 𝑠 , and the sampled action 𝑎 as input, and outputs
the reward signal which indicates to what degree the generated
state-action pair matches the demonstrated trajectories. GAIL’s
input state is the same as in NEXT-GAIL. GAIL’s generator has
the same structure as the NEXT-GAIL, i.e., a combination of en-
coder and decoder nets. GAIL’s discriminator also has the same
structure as that in NEXT-GAIL. The difference to NEXT-GAIL is
that GAIL does not have the classifier net for feature/knowledge
disentanglement.

• cGAIL [48]. Differing from GAIL, the generator of cGAIL con-
sumes the state feature map together with a grid label which is
served as a condition, and outputs the policy. The generator takes
the state-action pair and the grid label condition as input, and
outputs the signal. Here, the condition of cGAIL is the grid label
of the input state, which is embedded into a channel of size 5× 5,
and then concatenated with the 4× 5× 5 state feature map. Other
than the input channels of the first convolutional layers (cGAIL

has 1 more channel than GAIL), the generator and discriminator
of cGAIL are the same as those in GAIL.

6.4 Comparison Results
Figure 8 shows the KL divergence and the 𝐿2-distance between the
inferred policy and the empirical ground truth policy for the non-
expert grids in July. We randomly select 10 drivers from our data set.
The x-axis is the driver ID, and y-axis is the average KL divergence
(Figure 8a) and 𝐿2-distance (Figure 8b) over the non-expert grids for
each taxi driver. Figure 8a illustrates that our proposed NEXT-GAIL
outperforms cGAIL and GAIL in all cases. On average, NEXT-GAIL
can reach a 25% and 12% lower KL divergence comparing with
GAIL and cGAIL respectively. When looking into the results of
𝐿2-distance, the advantage of our model is more distinct with an
average 33% and 23% lower 𝐿2-distance comparing with GAIL and
cGAIL respectively. These results can illustrate that our proposed
NEXT-GAIL framework can outperform the state-of-the-art imi-
tation learning approaches in inferring the optimal policy for the
non-experts.

6.5 Expert Knowledge Disentanglement
Analysis

To study the effectiveness of the expert knowledge disentangle-
ment of our proposed model, we analyze the accuracy of the spatial-
temporal classifier 𝐶𝑙𝑠𝜙 consuming 𝑣𝑔𝑡 with legend “ST Cls” con-
suming 𝑣𝑘 with ledeng “Adv ST Cls” along the training process
in Figure 9. The learning curve of the training phase for a driver
is illustrated in Figure 9, where the x-axis is the training epoch,
and the y-axis is the accuracy of the ST Cls (orange solid curve)
and the Adv ST Cls (green dashed curve) and the KL-divergence
of the policy net (red dashdotted curve). The red dashdotted curve
indicates that the KL-divergence of the policy net decreases as the
training process goes on, which means our proposed NEXT-GAIL
can imitate the expert behavior in the training phase. The accuracy
of the ST classifier increases as the number of training epochs in-
creases, and reaches an accuracy of 80.20% when converges. Note
that, we also train a neural network aiming to classify the grid
from the input state feature map f𝑠 directly using the same training
data, which obtains an accuracy of 89.09%, slightly higher than
that of the ST classifier in NEXT-GAIL. These results can indicate
that 𝑣𝑔𝑡 can absorb most spatial information from the input state
feature map f𝑠 . Meanwhile, the accuracy of adversarial ST classifier
remains low along the whole training process. The highest accuracy
of Adv ST Cls is 13.79% which is similar to performance of random
guess, which has an accuracy of 4.35% given totally 23 expert grids.
The performance of Adv ST Cls indicates 𝑣𝑘 contains nearly no
information about the spatial characteristics of the input state.

7 RELATEDWORK
7.1 Human Decision Analysis.
Human decision analysis targets on improving decision making
efficiency via learning representations of decision-maker’s strate-
gies and preferences and analyzing them from uncertain, complex
and dynamical decision features [14, 16]. It has been proved to be
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(a) KL divergence (b) L2 distance

Figure 8: Comparison results.
Figure 9: Learning curve of NEXT-GAIL.

useful in the field of public health [42], business [9], and urban com-
puting [50] with human generated spatial-temporal data (HSTD).
Given HSTD, human decision analysis is applied to improve taxi
operation efficiency [11, 12, 28, 33, 35, 44, 45, 48, 49], and analyze
urban dweller transportation modes [41, 43]. Specifically in the taxi
scenario, [28, 45] focuses on taxi dispatching for better taxi opera-
tion management, and [11, 12, 33, 35, 44, 48] targets on passenger
seeking for each individual taxi driver’s well-being. However, all of
these works focus on finding the optimal decision strategies with
given HSTD, overlooking the HSTD’s quality for application. By
contrast, our work studies the quality of HSTD when applied on im-
itation learning, and makes appropriate adjustments on algorithm
for more reasonable data usage which entails a better performance.

7.2 Imitation learning.
Imitation learning (IL), also known as learning from demonstrations,
has two main paradigms, namely, inverse reinforcement learning
(IRL), and apprenticeship learning (AL). IL inversely recovers the
agent’s policy and reward functions from the collected demon-
strations. IRL approaches [5, 52, 53] have been proposed based
on different principles, including maximum entropy, maximum
causal entropy, and relative entropy principles [5, 52, 53]. All the
approaches assume that the underlying reward function is a linear
function and features have to be manually extracted. A progress
in AP, the Generative adversarial imitation learning (GAIL) [15],
and its extension works cGAIL [48], xGAIL [32], InfoGAIL [25],
adversarial IRL [10], fGAIL [47], trajGAIL [49] learn the non-linear
policy and reward functions as two deep neural networks (DNNs),
with theoretical connections to generator and discriminator in gen-
erative adversarial networks (GANs) structure. All of these existing
imitation learning approaches assume the observed data are from
expert agents. However, it is hard to ensure that the data we col-
lected from real-world are all expert. And these works cannot infer
the optimal policy of the non-experts. In this paper, we make the
first attempt to deal with this challenge with HSTD.

7.3 Feature disentanglement.
Feature disentanglement aims at learning interpretable representa-
tions with deep generative models such as generative adversarial
networks (GANs) [13] and variational autoencoders (VAEs) [20]. It
has been studied under different degrees of supervision. [21] applied

feature disentanglement for 3D image rendering via learning invert-
ible graphic codes with fully supervised data. [19] extended VAE
for representation disentanglement in semi-supervised settings. For
unsupervised situation, [6] maximized the mutual information be-
tween latent codes and synthesized data for the fulfillment of feature
disentanglement. Feature disentanglement has also been applied in
various domains such as in pose-invariant recognition [34, 39, 40],
identity-preserving image editing [17, 23], voice conversion [8]
and automatic speech recognition [7]. Though broadly applied on
images, voices and speeches, few works focus on applying feature
disentanglement on human-generated spatial-temporal data. In this
work, we disentangle expert knowledge from demonstrated human-
generated spatial-temporal data and enable knowledge transfer via
knowledge ensemble and imitation learning. To the best of our
knowledge, we are the first to apply feature disentanglement in
imitation learning for the fulfillment of knowledge transfer with
demonstrations from both expert and non-expert agents.

8 CONCLUSION
In this paper, we proposeNEXT-GAIL, a novel GenerativeAdversarial
Imitation Learning for Non-experts model that infers the expert
policy for non-experts, by disentangling expert knowledge from
their demonstrations, and transferring the knowledge across spatial-
temporal regions. Our evaluation results on a real-world large scale
dataset, specifically, on taxi drivers’ passenger-seeking processes,
illustrate that NEXT-GAIL outperforms the state-of-the-art base-
line approaches by an average margin of 23% in accuracy when
inferring the optimal policy for non-experts.
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